四轮独立驱动电动汽车轨迹跟踪及稳定性协调控制
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

陈舒平(1984—),男,博士后,工学博士,主要研究方向为智能汽车控制。E-mail: cspmoon3@163.com

通讯作者:

赵治国(1971—),男,教授,博士生导师,工学博士,主要研究方向为智能与新能源汽车控制。E-mail: zhiguozhao@tongji.edu.cn

中图分类号:

U461

基金项目:

国家自然科学基金(52172390)


Coordinated Control of Trajectory Tracking and Yaw Stability of Four-Wheel-Independent-Drive Autonomous Electric Vehicles
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对紧急避障轨迹跟踪和车辆稳定性多目标控制问题,以四轮独立驱动智能电动汽车为研究对象,提出一种分层结构的轨迹跟踪及稳定性控制方法,上层控制器采用线性时变模型预测控制(LTV MPC)生成期望前轮转角和附加横摆力矩,并通过PID速度跟踪将车速变化考虑到模型预测优化求解中生成总需求转矩,下层控制器采用二次规划将上层计算的广义力最优分配给四个车轮。其中,预测模型为8自由度车辆模型,被控对象为14自由度车辆模型,并建立联合工况刷子轮胎模型。不同车速,路面附着条件以及有无稳定性控制的双移线工况仿真结果表明,所提控制方法具有较好的鲁棒性和轨迹跟踪性能,极限工况下在保证车辆稳定性的同时提高了轨迹跟踪精度。

    Abstract:

    To investigate the multi-objective control problem of trajectory tracking and vehicle stability, a hierarchical coordinated control strategy of trajectory tracking and yaw stability was proposed for four-wheel-independent-drive autonomous electric vehicles. In the upper controller, the linear-time-varying model predictive control (LTV MPC) was employed to generate the desired front road wheel steering angle and yaw moment, and the PID speed control embedded in the model predictive optimization solutions was introduced to generate the desired total driving/braking torque. In the lower controller, the generalized forces from the upper layer were allocated to the four wheels based on quadratic programming. An 8-degree-of-freedom (DOF) vehicle model was used as the prediction model and a high-fidelity 14-DOF vehicle model with longitudinal and lateral combined brush tire model was used as the plant. Numerical simulation results under different speeds, road adhesion coefficients and conditions of whether to consider yaw stability control, demonstrate that the proposed controller possesses good trajectory tracking performance and robustness, which improves the tracking accuracy while ensuring the yaw stability under the limit condition.

    参考文献
    [1] PENG H, CHEN X. Active safety control of X-by-wire electric vehicles: a survey[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 6(2): 115.
    [2] ZHU S, WEI B, CHEN C, et al. Emergency steering collision avoidance control based on distributed driving intelligent vehicles[J]. Concurrency and Computation: Practice and Experience, 2022, 35(2): 1.
    [3] JEONG Y, YIM S. Path tracking control with four-wheel independent steering, driving and braking systems for autonomous electric vehicles[J]. IEEE Access, 2022,10: 74733.
    [4] AMER N H, ZAMZURI H, HUDHA K, et al. Modelling and control strategies in path tracking control for autonomous ground vehicles: a review of state of the art and challenges[J]. Journal of Intelligent Robot Systems, 2017, 86: 225.
    [5] 张雷, 赵宪华, 王震坡. 四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J]. 汽车工程, 2020, 42(11): 1513.ZHANG Lei, ZHAO Xianhua, WANG Zhenpo. Study on coordinated control of trajectory tracking and yaw stability for autonomous four-wheel-independent-driving electric vehicles [J]. Automotive Engineering, 2020, 42(11): 1513.
    [6] 白国星, 孟宇, 刘立, 等. 无人驾驶车辆路径跟踪控制研究现状 [J]. 工程科学学报, 2021, 43(4): 475.BAI Guoxing, MENG Yu, LIU Li, et al. Current status of path tracking control of unmanned driving vehicles[J]. Chinese Journal of Engineering, 2021, 43(4): 475.
    [7] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41(10): 1109.CHEN Te, CHEN Long, XU Xing, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability[J]. Automotive Engineering, 2019, 41(10): 1109.
    [8] 陈龙, 邹凯, 蔡英凤, 等. 基于NMPC的智能汽车纵横向综合轨迹跟踪控制[J]. 汽车工程, 2021, 43(2): 153.CHEN Long, ZOU Kai, CAI Yingfeng, et al. Longitudinal and lateral comprehensive trajectory tracking control of intelligent vehicles based on NMPC[J]. Automotive Engineering, 2021, 43(2): 153.
    [9] 吴西涛, 魏超, 翟建坤, 等. 考虑横摆稳定性的无人车轨迹跟踪控制优化研究[J]. 机械工程学报, 2022, 58(6): 130.WU Xitao, WEI Chao, ZHAI Jiankun, et al. Study on the optimization of autonomous vehicle on path-following considering yaw stability[J]. Journal of Mechanical Engineering, 2022, 58(6): 130.
    [10] 张新荣, 谭宇航, 贾一帆, 等. 四轮独立驱动电动汽车路径跟踪鲁棒控制[J]. 汽车工程, 2023, 45(2): 253.ZHANG Xinrong, TAN Yuhang, JIA Yifan, et al. Robust control of path tracking for four-wheel independent drive electric vehicles[J]. Automotive Engineering, 2023, 45(2): 253.
    [11] CHOI M, CHOI S B. MPC for vehicle lateral stability via differential braking and active front steering considering practical aspects[J]. Proc IMechE Part D: J Automobile Engineering, 2016, 230(4): 459.
    [12] CHEN S, CHEN H, NEGRUT D. Implementation of MPC-based path tracking for autonomous vehicles considering three vehicle dynamics models with different fidelities[J]. Automotive Innovation, 2020, 3(4): 386.
    [13] CHEN S, XIONG G, CHEN H, et al. MPC-based path tracking with PID speed control for high-speed autonomous vehicles considering time-optimal travel[J]. Journal of Central South University, 2020, 27(12): 3702.
    [14] CHEN S, CHEN H, NEGRUT D. Implementation of MPC-based trajectory tracking considering different fidelity vehicle models[J]. Journal of Beijing Institute of Technology, 2020, 29(3): 303.
    [15] SHIM T, GHIKE C. Understanding the limitations of different vehicle models for roll dynamics studies[J]. Vehicle System Dynamics, 2007, 45(3): 191.
    [16] XIANG C, PENG H, WANG W, et al. Path tracking coordinated control strategy for autonomous four in-wheel-motor independent-drive vehicles with consideration of lateral stability[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 235(4): 1023.
    [17] LI L, LU Y, WANG R, et al. A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3389.
    [18] GONG J, XU W, JIANG Y, et al. Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking[J]. Journal of Beijing Institute of Technology, 2015, 24(4): 441.
    [19] PENG H, WANG W, XIANG C, et al. Torque coordinated control of four in-wheel motor independent-drive vehicles with consideration of the safety and economy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 9604.
    [20] 王伟达, 彭浩楠, 黄国强, 等. 四轮独立驱动电动汽车行驶稳定性分析与联合滑模变结构主动控制[J]. 机械工程学报, 2021, 57(4): 103.WANG Weida, PENG Haonan, HUANG Guoqiang, et al. Driving stability analysis and united sliding mode variable structure active control of four wheel independent driven electric vehicles[J]. Journal of Mechanical Engineering,2021,57(4):103.
    [21] GUO N, ZHANG X, ZOU Y, et al. A fast model predictive control allocation of distributed drive electric vehicles for tire slip energy saving with stability constraints[J]. Control Engineering Practice, 2020, 102: 104554.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈舒平,赵治国,赵坤.四轮独立驱动电动汽车轨迹跟踪及稳定性协调控制[J].同济大学学报(自然科学版),2024,52(S1):185~196

复制
分享
文章指标
  • 点击次数:24
  • 下载次数: 56
  • HTML阅读次数: 10
  • 引用次数: 0
历史
  • 收稿日期:2023-11-28
  • 在线发布日期: 2024-11-20
文章二维码