数据-模型协同驱动的Robotaxi车队充电设施选址定容方法
作者:
作者单位:

同济大学 汽车学院,上海 201804

作者简介:

李芃禹(1995—),男,工学博士,主要研究方向为智能交通系统。E-mail: 2111549@tongji.edu.cn

通讯作者:

王宁(1977—),男,副教授,博士生导师,工学博士,主要研究方向为车队调度优化。E-mail: wangning@tongji.edu.cn

中图分类号:

U469.72

基金项目:

同济大学交叉学科联合攻关项目(2023-4-YB-04)


Charging Facility Layout and Planning Approach for Robotaxi Fleets Collaboratively Driven by Data and Model
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    自动驾驶电动出租车Robotaxi车队的规模化商业运营需要完善的充电基础设施作为前提,但目前充电设施资源仍然存在容量不足、利用率低、布局不合理等问题。针对Robotaxi车队充电站选址定容问题,首先,以满足乘客出行需求为约束条件,提出基于出行网络行程衔接和Hopcroft-Karp算法的最小车队规模计算方法;在此基础上,通过蒙特卡洛仿真量化获取车队充电需求的时空分布;然后,考虑充电站建设投资、运营、维护的折旧成本以及车队空载行驶、排队充电和订单损失的机会成本,以综合成本最小化为目标,构建充电站选址定容优化模型,并针对模型求解提出一种基于遗传算子和自适应惯性权重的改进粒子群算法;最后,基于中国成都市的用户出行订单和地理数据验证了所提模型及算法的有效性。

    Abstract:

    The large-scale commercial application of electric Robotaxi fleets requires well-developed charging infrastructure as a prerequisite. However, there are still issues with insufficient quantity, low utilization rate, and inappropriate distribution of charging facilities. In addressing the site selection and capacity planning of charging stations for electric Robotaxi fleets, firstly, a minimum fleet size calculation method based on the trip network articulation and Hopcroft-Karp algorithm was proposed to meet passenger temp-spatial travel demands. Based on this, the spatio-temporal distribution of charging demands of Robotaxi fleets was quantified through Monte Carlo simulation. Then, considering the construction and operation costs of charging stations, grid loss costs, no-load driving, queuing for charging and loss of order opportunity costs of Robotaxi fleets, an optimization model for the site selection and capacity planning of charging stations for electric Robotaxi fleets was constructed with the objective of minimizing overall costs, and an improved particle swarm optimization algorithm based on genetic operators and adaptive inertia weight was proposed. Finally, the effectiveness of the proposed model and algorithm was validated using real user travel orders and geographic data from the city of Chengdu, China.

    参考文献
    [1] 中华人民共和国公安部. 全国新能源汽车保有量已突破1 000万辆[EB/OL]. (2022-07-6)[2023-11-28]. https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8577652.Ministry of Public Security of The People’s Republic of China. The number of new energy vehicles of China has exceeded 10 million[EB/OL]. (2022-07-6) [2023-11-28]. https://app.mps.gov.cn/gdnps/pc/content.jsp?id=8577652.
    [2] 国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[EB/OL]. (2020-10-20) [2023-11-28]. http://www.gov.cn/zhengce/content/202011/02/content_5556716.htm.General Office of The State Council. General Office of the State Council notice about new energy vehicle industry development plan for 2021 to 2035[EB/OL]. (2020-10-20) [2023-11-28]. http://www.gov.cn/zhengce/content/202011/02/content_5556716.htm.
    [3] KIM S, LEE U, LEE I, et al. Idle vehicle relocation strategy through deep learning for shared autonomous electric vehicle system optimization[J]. Journal of Cleaner Production, 2022, 333: 130055.
    [4] ZHANG Q, ZHU Y, WANG Z, et al. Siting and sizing of electric vehicle fast-charging station based on quasi-dynamic traffic flow[J]. IET Renewable Power Generation, 2021, 14(1):39.
    [5] ZHOU B, LITTLER T, FOLEY A. Electric vehicle capacity forecasting model with application to load levelling[C]// Proceedings of the 2015 IEEE Power and Energy Society General Meeting. Piscataway: IEEE, 2015: 1.
    [6] 郭茂祖,张雅喆,赵玲玲.基于空间语义和个体活动的电动汽车充电站选址方法[J].计算机应用, 2023(9):2819.GUO Maozu, ZHANG Yaze, ZHAO Lingling. Electric vehicle charging station siting method based on spatial semantics and individual activities[J]. Journal of Computer Applications, 2023(9):2819.
    [7] ZHAO Y, GUO Y, GUO Q, et al. Deployment of the electric vehicle charging station considering existing competitors[J]. IEEE Transactions on Smart Grid, 2020, 11: 4236.
    [8] 刘东林,王育飞,张宇,等.基于Huff模型的电动汽车充电站选址定容方法[J].电力自动化设备, 2023(11):103.LIU Donglin, WANG Yufei, ZHANG Yu, et al. Siting and sizing method of electric vehicle charging stations based on Huff model[J]. Electric Power Automation Equipment,2023(11):103.
    [9] 任峰,向月,雷小林,等.基于GPS数据的电动出租车充电桩选址定容[J].电力自动化设备, 2022, 42(10): 273.REN Feng, XIANG Yue, LEI Xiaolin, et al. Location and capacity determination of electric taxi charging pile based on GPS data[J]. Electric Power Automation Equipment, 2022, 42(10): 273.
    [10] 苏粟,李玉璟,贾泽瑞,等.基于GPS轨迹挖掘的电动出租车充电站规划[J].电力自动化设备, 2022,42(10):255.SU Su, LI Yujing, JIA Zerui, et al. Electric taxi charging station planning based on GPS trajectory mining[J]. Electric Power Automation Equipment, 2022, 42(10):255.
    [11] 李艳波,柳柏松,姚博彬,等.考虑路网随机特性的高速公路换电站选址[J].吉林大学学报(工学版), 2023,53(5):1364.LI Yanbo, LIU Baisong, YAO Bobin, et al. Location of electrical changing station of expressway considering stochastic characteristics of road network[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5):1364.
    [12] 盛裕杰,郭庆来,刘梦洁,等.多源数据融合的用户充电行为分析与充电设施规划实践[J].电力系统自动化 ,2022,46(12):151.SHENG Yujie, GUO Qinglai, LIU Mengjie, et al. User charging behavior analysis and charging facility planning practice based on multi source data fusion[J]. Automation of Electric Power Systems, 2022, 46(12):151.
    [13] 魏冠元,王冠群,阮观梅,等.电动汽车充电站选址智能决策与优化研究综述[J/OL].计算机工程与应用, 2023(21):52.WEI Guanyuan, WANG Guanqun, RUAN Guanmei, et al. Review of intelligent decision optimization of electric vehicle charging stations location[J]. Computer Engineering and Applications, 2023(21): 52.
    [14] PAHLAVANHOSEINI A, SEPASIAN M S. Optimal planning of PEV fast charging stations using an auction-based method[J]. Journal of Cleaner Production, 2020, 246:1.
    [15] PAN L, YAO E, YANG Y, et al., A location model for electric vehicle (EV) public charging stations based on drivers' existing activities[J]. Sustainable Cities and Society, 2020, 59: 1.
    [16] ZHANG B, ZHAO M, HU X. Location planning of electric vehicle charging station with users' preferences and waiting time: multi-objective bi-level programming model and HNSGA-II algorithm[J]. International Journal of Production Research, 2022, 1650:1.
    [17] GAN X, ZHANG H, HANG G, et al. Fast-charging station deployment considering elastic demand[J]. IEEE Transactions on Transportation Electrification, 2020, 6(1):158.
    [18] 齐琳,姚俭,王心月.基于改进粒子群算法的电动汽车充电站布局优化[J].公路交通科技, 2017, 34(6):136.QI Lin, YAO Jian, WANG Xinyue. Optimizing layout of electric vehicle charging station based on improved particle swarm optimization algorithm [J]. Journal of Highway and Transportation Research and Development, 2017, 34(6):136.
    [19] REDDY M S K, SELVAJYOTHI K. Optimal placement of electric vehicle charging station for unbalanced radial distribution systems[C]//2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP). Chennai, India: IEEE, 2020:1.
    [20] HOPCROFT J E, KARP R M. A n5/2 algorithm for maximum matchings in bipartite graphs[J]. SIAM Journal on Computing, 1971, 2(4):122.
    [21] 臧海祥,傅雨婷,陈铭,等. 基于改进自适应遗传算法的EV充电站动态规划[J].电力自动化设备,2020,40(1):163.ZANG Haixiang, FU Yuting, CHEN Ming, et al. Dynamic planning of EV charging stations based on improved adaptive genetic algorithm[J]. Electric Power Automation Equipment, 2020, 40(1):163.
    [22] 王振伟. 北京市电动出租车充电设施选址优化[D].北京:北京交通大学, 2017.WANG Zhenwei. Optimization of charging infrastructure siting for electric taxis in Beijing[D]. Beijing:Beijing Jiaotong University, 2017.
    [23] 周筝,龙华,李帅,等.时空需求下的电动汽车充电设施选址优化模型[J].计算机应用研究,2023(9):2633.ZHOU Zheng, LONG Hua, LI Shuai, et al. Optimization model for location of electric vehicle charging station under spatial-temporal demand[J]. Application Research of Computers, 2023(9): 2633.
    [24] 张渊博,邹德旋,张春韵,等.自适应惯性权重的粒子群优化算法[J].计算机仿真, 2023,40(4):350.ZHANG Yuabo, ZOU Dexuan, ZHANG Chunyun, et al. Particle swarm optimization algorithm with adaptive lnertial weight [J]. Computer Simulation, 2023, 40(4): 350.
    [25] ASAMER J, REINTHALER M, RUTHMAIR M, et al. Optimizing charging station locations for urban taxi providers[J]. Transportation Research Part A: Policy and Practice, 2016, 85:233.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李芃禹,曹静,王宁,张义龙.数据-模型协同驱动的Robotaxi车队充电设施选址定容方法[J].同济大学学报(自然科学版),2024,52(S1):197~209

复制
分享
文章指标
  • 点击次数:10
  • 下载次数: 39
  • HTML阅读次数: 2
  • 引用次数: 0
历史
  • 收稿日期:2023-08-26
  • 在线发布日期: 2024-11-20
文章二维码