锂离子电池老化估计和预测的深度学习混合模型
作者:
作者单位:

同济大学 新能源汽车工程中心,上海 201804

作者简介:

项越(1998—),男,工学硕士,主要研究方向为锂离子电池健康状态估计。E-mail: 2131536@tongji.edu.cn

中图分类号:

TM912

基金项目:

国家重点研发计划政府间国际科技创新合作专项(2022YFE0207900); 国家自然科学基金(52307248)


Deep Learning Hybrid Model for Lithium-Ion Battery Aging Estimation and Prediction
Author:
Affiliation:

Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    锂离子电池的衰退过程关系到其作为动力源和储能元件的整个生命周期,包括但不限于性能发挥和梯次利用等。因此,准确和快速地估计或预测锂离子电池的老化状态引起了广泛的关注。然而,现有研究大多集中在老化估计和预测的某一方面,缺少对二者的动态结合。本文提出了一种基于深度学习的容量老化估计和预测的混合模型,从充电和放电弛豫过程中提取与老化高度相关的特征,结合历史容量衰减数据,动态地给出锂离子电池当前容量的估计值和未来容量的预测值。在一个不同倍率充放电的新数据集上验证了我们的方法,针对0.25 C充电工况,取得了0.29%的MAPE。这一结果表明,该模型能够充分利用真实世界中常见的弛豫过程,结合BMS中记录的历史容量数据,以较高精度同时给出容量衰退的估计值和预测值。

    Abstract:

    The degradation process of lithium-ion batteries is intricately linked to their entire lifecycle as power sources and energy storage devices, encompassing aspects such as performance delivery and cycling utilization. Consequently, the accurate and expedient estimation or prediction of the aging state of lithium-ion batteries has garnered extensive attention. Nonetheless, prevailing research predominantly concentrates on either aging estimation or prediction, neglecting the dynamic fusion of both facets. This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning, wherein salient features highly pertinent to aging are extracted from charge and discharge relaxation processes. By amalgamating historical capacity decay data, the model dynamically furnishes estimations of the present capacity and forecasts of future capacity for lithium-ion batteries. Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates. Specifically, under a charging condition of 0.25 C, a mean absolute percentage error (MAPE) of 0.29% is achieved. This outcome underscores the model's adeptness in harnessing relaxation processes commonly encountered in the real world and synergizing with historical capacity records within battery management systems (BMS), thereby affording estimations and prognostications of capacity decline with heightened precision.

    参考文献
    [1] DENG J,et al. Electric vehicles batteries: requirements and challenges[J]. Joule, 2020, 4(3): 511.
    [2] HARPER G, et al., Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75.
    [3] PALACíN M R, DE GUIBERT A.Why do batteries fail?[J] Science, 2016, 351(6273): 1253292.
    [4] HAN X, al et, A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
    [5] HU X, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310.
    [6] HU X,et al. State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334.
    [7] YAO L, al et, A review of lithium-ion battery state of health estimation and prediction methods[J]. World Electric Vehicle Journal, 2021, 12(3): 113.
    [8] BERECIBAR M, et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572.
    [9] WANG X, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. E Transportation, 2021, 7: 100093.
    [10] SEAMAN A, DAO T S, PHEE J MC. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation[J]. Journal of Power Sources, 2014, 256: 410.
    [11] LI Y,et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254.
    [12] SEVERSON K A, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383.
    [13] ZHU J, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13(1): 2261.
    [14] YANG D, et al. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve[J]. Journal of Power Sources, 2018, 384: 387.
    [15] LYU Z, GAO R, LI X. A partial charging curve-based data-fusion-model method for capacity estimation of Li-Ion battery[J]. Journal of Power Sources, 2021, 483: 229131.
    [16] LI Y, et al. State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis[J]. Applied Energy, 2020, 277: 115504.
    [17] ZHANG Z, et al. State‐of‐health estimation for the lithium‐ion battery based on gradient boosting decision tree with autonomous selection of excellent features[J]. International Journal of Energy Research, 2022, 46(2): 1756.
    [18] YANG D, et al. A neural network based state-of-health estimation of lithium-ion battery in electric vehicles[J]. Energy Procedia, 2017, 105: 2059.
    [19] HONG J, et al. Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning[J]. Applied Energy, 2020, 278: 115646.
    [20] CHO K, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[Z/OL]. arXiv, 2014, arXiv:1406.1078.
    [21] KARPATHY A, et al. Visualizing and understanding recurrent networks[Z/OL]. arXiv, 2015, arXiv:1506.02078.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

项越,姜波,戴海峰.锂离子电池老化估计和预测的深度学习混合模型[J].同济大学学报(自然科学版),2024,52(S1):215~222

复制
分享
文章指标
  • 点击次数:63
  • 下载次数: 84
  • HTML阅读次数: 11
  • 引用次数: 0
历史
  • 收稿日期:2023-12-21
  • 在线发布日期: 2024-11-20
文章二维码