基于LSTM-SSA-BDLM的桥梁结构变形性能动态预测与预警
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.同济大学 土木工程防灾国家重点实验室,上海200092;3.山东省高速公路技术和安全评估重点实验室,山东 济南 250098

作者简介:

屈广,博士生,主要研究方向为桥梁健康监测。E-mail: 2011528@tongji.edu.cn

通讯作者:

孙利民,教授,博士生导师,工学博士,主要研究方向为桥梁健康监测与振动控制。 E-mail: lmsun@tongji.edu.cn

中图分类号:

TU312

基金项目:

国家自然科学基金面上项目(52378187);上海市科委期智研究院科技合作项目(SQZ202310)


Dynamic Prediction and Early Warning of Bridge Structural Deformation Performance Based on LSTM-SSA-BDLM
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;3.Shandong Key Laboratory of Highway Technology and Safety Assessment, Ji’nan250098,China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    掌握桥梁结构预期行为可以提早识别潜在的结构问题或失效模式。提出了一种新型的基于长短期记忆网络(LSTM)的桥梁结构性能动态预测框架。研究采用Block Maxima(BM)方法从每小时监测数据中提取挠度极值,作为评估桥梁安全性能的关键指标。该方法通过对具有周期性的挠度极值序列进行滑动窗口LSTM预测,结合奇异谱分析(SSA)和考虑误差更新的贝叶斯动态线性模型(BDLM),有效地提取了由环境因素引起的长期趋势和周期性挠度变化。这一过程有效降低了噪声的影响,同时保留了车辆荷载效应的关键信息。在实际工程案例中的三组监测数据应用表明,该方法在预测精度上相较于滑动窗口LSTM和BDLM方法有显著提升。此外,还提出了一种基于极值理论的动态预警阈值设定方法,有效避免了静态预警指标的局限性,并利用预测结果的置信区间实现了提前预警。

    Abstract:

    Understanding the anticipated behavior of bridge structures is crucial for early identification of potential structural issues or failure modes. This paper proposes a novel predictive framework for bridge structural performance based on Long Short-Term Memory Networks (LSTM). The block maxima (BM) method is employed to extract hourly deflection extremes from monitoring data, which serve as key indicators for assessing bridge safety. The method involves sliding window LSTM predictions for periodic deflection extreme sequences, integrating Singular Spectrum Analysis (SSA) and error-updating Bayesian Dynamic Linear Models (BDLM) to effectively extract long-term trends and cyclic deflection changes caused by environmental factors. This process effectively reduces the impact of noise while preserving the critical information of vehicle load effects. Applications in three real engineering cases demonstrate that proposed method significantly improves prediction accuracy compared to sliding window LSTM and BDLM approaches. Furthermore, the paper proposes a dynamic warning threshold setting method based on extreme value theory, which effectively avoids the limitations of static warning indicators and utilizes the confidence intervals of predictions for proactive warning.

    参考文献
    相似文献
    引证文献
引用本文

屈广,孙利民,辛公锋.基于LSTM-SSA-BDLM的桥梁结构变形性能动态预测与预警[J].同济大学学报(自然科学版),2025,53(1):26~34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-06
  • 在线发布日期: 2025-02-08
文章二维码