钢筋混凝土柱基于能量等效的损伤状态量化方法
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.同济大学 土木工程防灾减灾全国重点实验室,上海 200092;3.同济大学 上海防灾救灾研究所,上海 200092

作者简介:

宁超列,副教授,工学博士,主要研究方向为钢筋混凝土抗震可靠度与地震易损性。 E-mail:clning@tongji.edu.cn

通讯作者:

翟永梅,副研究员,工学博士,主要研究方向为建筑物震害预测与防灾减灾工程。 E-mail: zymww@tongji.edu.cn

中图分类号:

TU375.3

基金项目:

国家自然科学基金(51808397,52278522)


Quantification Method of Damage States for Reinforced Concrete Columns Based on Energy Equivalence
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University, Shanghai 200092, China;3.Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    钢筋混凝土柱在地震作用下具有不同的失效模式。不同失效模式钢筋混凝土柱的损伤状态量化方法目前存在定义方式不一且预测精度较差的问题。基于246根钢筋混凝土矩形截面柱的拟静力往复加载试验数据,提出了一种基于能量等效原则量化不同失效模式钢筋混凝土柱损伤状态的方法。通过引入贝叶斯神经网络模型,建立了适用于不同失效模式钢筋混凝土柱的位移角预测公式。研究结果表明:能量等效原则可将钢筋混凝土柱的骨架曲线等效为一个理想弹塑性模型,不仅便于定义屈服点、峰值点和极限点,而且便于在同一框架下对比不同失效模式钢筋混凝土柱的抗震力学性能差异。根据屈服点、峰值点和极限点的位移角,钢筋混凝土柱的损伤状态可以划分为:“基本完好”、“轻度破环”、“中等破坏”和“严重破坏”四个等级。贝叶斯神经网络模型可以准确预测不同失效模式钢筋混凝土柱屈服点、峰值点和极限点的位移角。传统的峰值承载力经验折减系数法在预测屈服点的位移角时偏于保守,在预测极限点的位移角时偏于不安全。

    Abstract:

    Reinforced concrete (RC) columns have different failure modes under earthquake excitations. The damage state quantification methods of RC columns under different failure modes have problems including inconsistent quantification procedure, and poor prediction accuracy. Therefore, an energy equivalence principle was proposed in this study to quantify the damage states of RC columns under different failure modes using quasi-static experimental data of 246 RC columns with rectangular cross-sections. The Bayesian neural network was introduced to develop the drift angle prediction models for RC columns independent of failure patterns. The research results indicated that the energy equivalence principle can transfer the backbone curves of RC columns into an idealized elastic-plastic model. This not only facilitates the definition of yield point, peak point and ultimate point, but also benefits to compare the seismic performance of RC columns under different failure modes in a unified framework. The damage states of RC columns under different failure modes can be categorized into four groups, namely basic intact damage stage, slight damage state, moderate damage state and sever damage state using the drift angle at yield point, peak point and ultimate point. The Bayesian neural network model can predict well the drift angles of RC columns independent of failure modes at yield point, peak point and ultimate point. The traditional empirical factor method by reducing the peak strength tends to underestimate the drift angle at yield point, and overestimate the drift angle at ultimate point.

    参考文献
    [1] BERTRTO V V. Performance-based seismic engineering: A critical review of proposed guidelines[C]//Seismic Design Methodologies for the Next Generation of Codes. Rotterdam: A. A. Balkema, 1997: 1-31.
    [2] 蒋欢军, 刘小娟. 锈蚀钢筋混凝土柱基于变形的性能指标研究[J]. 建筑结构学报, 2015, 36(7): 115.JIANG Huanjun, LIU Xiaojuan. Study on deformation-based performance index of corroded reinforced concrete column[J]. Journal of Building Structures, 2015, 36(7): 115.
    [3] KOWALSKY M J. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of Structural Engineering, 2000, 126(8): 869.
    [4] PANAGIOTAKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[J]. Structural Journal, 2001, 98(2): 135.
    [5] 蒋欢军, 吕西林. 钢筋混凝土柱对应于各地震损伤状态的侧向变形计算[J].地震工程与工程振动, 2008,28(2):44.JIANG Huanjun, LU Xilin. Lateral displacement estimation for RC columns in different seismic damage states[J]. Earthquake Engineering and Engineering Vibration, 2008, 28(2): 44.
    [6] 蒋欢军, 王斌, 吕西林. 钢筋混凝土梁和柱性能界限状态及其变形限值[J].建筑结构,2010,40(1):10.JIANG Huanjun, WANG Bin, Lü Xilin, Performance limit states and deformation limits of RC beams and columns[J]. Building Structure, 2010,40(1): 10.
    [7] 中华人民共和国住房与城乡建设部. 高层建筑混凝土结构技术规程: JGJ 3-2010 [S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification for concrete structures of tall building: JGJ 3-2010[S]. Beijing: China Architecture & Building Press, 2010
    [8] ASCE. Seismic evaluation and retrofit of existing buildings:ASCE 41-17[S]. Reston:American Society of Civil Engineers, 2017.
    [9] 崔济东, 韩小雷, 龚涣钧, 等. 钢筋混凝土柱变形性能指标限值及其试验验证[J]. 同济大学学报(自然科学版), 2018, 46(5): 593.CUI Jidong, HAN Xiaolei, GONG Huanjun, et al. Deformation limits of reinforced concrete columns and their experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(5): 593.
    [10] LUO H, PAAL S G. A locally weighted machine learning model for generalized prediction of drift capacity in seismic vulnerability assessments[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(11): 935.
    [11] PARK R. Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 1989, 22(3): 155.
    [12] 吕西林, 周定松, 蒋欢军. 钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J]. 地震工程与工程振动, 2005, 25(6): 53.LU Xilin, ZHOU Dingsong, JIANG Huanjun. Deformation capacity and performance-based seismic design method for RC frame columns[J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6): 53.
    [13] GOH A T. Back-propagation neural networks for modeling complex systems[J]. Artificial Intelligence in Engineering, 1995, 9(3): 143.
    [14] MACKAY D J. A practical Bayesian framework for backpropagation networks[J]. Neural Computation, 1992, 4(3): 448.
    [15] MACKAY D J. Bayesian nonlinear modeling for the prediction competition[J]. ASHRAE Transactions, 1994, 100(2): 1053.
    [16] NEAL R M. Bayesian learning for neural networks[M]. Berlin: Springer Science & Business Media, 2012.
    [17] YAO Wei, ZENG Zhigang, LIAN Cheng. Generating probabilistic predictions using mean-variance estimation and echo state network[J]. Neuro Computing, 2017, 219: 536.
    [18] 于晓辉, 王猛, 宁超列. 基于机器学习的钢筋混凝土柱失效模式两阶段判别方法[J]. 建筑结构学报, 2022, 43(8): 220.YU Xiaohui, WANG Meng, NING Chaolie. A machine-learning-based two-step method for failure mode classification of reinforced concrete columns[J]. Journal of Building Structures, 2022, 43(8): 220.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宁超列,王硕,翟永梅.钢筋混凝土柱基于能量等效的损伤状态量化方法[J].同济大学学报(自然科学版),2025,53(1):35~42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-08
  • 在线发布日期: 2025-02-08
文章二维码