基于APCS-MLR模型和UNMIX模型的农田土重金属源解析
作者:
作者单位:

1.同济大学 土木工程学院,上海 200092;2.中南大学地球科学与信息物理学院,湖南 长沙 410083;3.中国有色金属工业昆明勘察设计研究院有限公司,云南 昆明 650051

作者简介:

陈永贵,工学博士,教授,博士生导师,主要研究方向为环境工程地质和非饱和土力学。 E-mail:cyg@tongji.edu.cn

中图分类号:

X825

基金项目:

云南省万人计划产业技术领军人才科技项目(云发改人事〔2019〕274号);中铝国际工程股份有限公司重点科研项目(CJ2021JS-06)


Analysis of Heavy Metal Sources in Farmland Soil Downstream of Heap Leaching Field Based on APCS-MLR Model and UNMIX Model.
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.School of Geosciences and Info-physics, Central South University, Changsha 410083, China;3.Kunming Prospecting Design Institute of China Nonferrous Metals Industry Co., Ltd., Kunming 650051, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探明某堆浸场下游农田土壤重金属的空间分布特征、污染现状及来源,共采集0.2m和0.5m深度76个采样点的152个土壤样本,测定Cu、Zn、Cr等8种金属元素含量,运用单因子污染指数法和内梅罗污染指数法评价其污染水平,进而采用主成分分析、绝对主成分-多元线性回归(APCS-MLR)模型和UNMIX模型分别解析污染源,并使用地统计学分析法进行验证。结果表明,土壤中Cr、Pb、As和Hg的含量平均值超过云南省土壤背景值,其中,As含量高于背景值和筛选值的点位比例分别超过90%和70%。UNMIX模型解析结果显示重金属污染源主要有4个,源1为矿业开发和交通源,对As和Pb的贡献率分别为65%和56%;源2为农业活动源,对Cd的贡献率为91%;源3为自然母质源,对Cu、Zn、Cr、Ni的贡献率分别为63%、61%、62%和55%;源4为燃煤源,对Hg的贡献率为94%。APCS-MLR模型解析结果与UNMIX模型基本一致,但未单独识别出自然母质源。上述结果可为农田生态环境管理精准施策提供技术支撑,为矿山污染防治及改善采矿工艺流程提供理论依据。

    Abstract:

    In order to explore the spatial distribution characteristics, pollution status and sources of heavy metals in farmland soil downstream of a heap leaching field, 152 soil samples were collected from 76 sampling points at 0.2 m and 0.5 m depths, and the contents of 8 metal elements such as Cu, Zn and Cr were determined. The pollution level was evaluated by single factor pollution index method and Nemerow pollution index method, and then the pollution sources were analyzed by principal component analysis, absolute principal component-multiple linear regression (APCS-MLR) model and UNMIX model, and verified by geostatistical analysis. The results showed that the average contents of Cr, Pb, As and Hg in the soil exceeded the soil background values in Yunnan Province, and the proportion of As content higher than the background value and the screening value exceeded 90% and 70%, respectively. The results of UNMIX model analysis showed that there were four main sources of heavy metal pollution. Source 1 is the mining development and traffic source, which contributed 65% and 56% to As and Pb, respectively. Source 2 is the source of agricultural activities, and the contribution rate to Cd was 91%. Source 3 is the natural source, and the contribution rates of Cu, Zn, Cr and Ni were 63%, 61%, 62% and 55%, respectively. Source 4 is the coal-fired source, which contributes 94% to Hg. The analytical results of APCS-MLR model were basically consistent with those of UNMIX model, but the natural parent material source was not identified alone. The above results can provide technical support for the precise implementation of farmland ecological environment management, and provide theoretical basis for mine pollution prevention and improvement of mining process.

    参考文献
    [1] 王显炜, 徐友宁, 杨敏, 等. 国内外矿山土壤重金属污染风险评价方法综述[J]. 中国矿业, 2009, 18(10): 54.WANG Xianwei, XU Youning, YANG Ming, et al. Review on risk assessment methods for soil heavy metal contamination in mines at home and abroad[J]. China Mining Magazine, 2009, 18(10): 54.
    [2] 朱文武. 矿山重金属污染土壤修复研究[J]. 中国资源综合利用, 2022, 40(1): 143.ZHU Wu. Remediation of heavy metal contaminated soil in mines [J]. Comprehensive utilization of resources in China, 2022, 40(1): 143.
    [3] 尚卫, 薛智凤, 艾昊, 等. 土壤中重金属污染研究进展[J]. 农业与技术, 2022, 42(21): 81.SHANG Wei, XUE Zhifeng, AI Hao, et al. Research progress on heavy metal pollution in soil [J]. Agriculture and Technology, 2022, 42 (21): 81.
    [4] 国务院. 国务院关于印发土壤污染防治行动计划的通知[EB/OL].[2023-02-09] https://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm.The Central People's Government of the People's Republic of China. Notice on issuing the action plan for soil pollution prevention and control [EB/OL]. [2023-02-09]. https://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm.
    [5] HUANG Ying, LI Tingqiang, WU Chengxian, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils[J]. Journal of Hazardous materials, 2015, 299: 540.
    [6] HOU Deyi, O'CONNOR D, NATHANAIL Paul, et al. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review[J]. Environmental Pollution, 2017, 231: 1188.
    [7] SHI Dongqi, LU Xinwei. Accumulation degree and source apportionment of trace metals in smaller than 63μm road dust from the areas with different land uses: a case study of Xi'an, China[J]. Science of the Total Environment, 2018, 636: 1211.
    [8] PARRA S, BRAVO M A, QUIROZ W, et al. Source apportionment for contaminated soils using multivariate statistical methods[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 127.
    [9] 张旺, 高珍冉, 邰粤鹰, 等. 基于APCS-MLR受体模型的贵州喀斯特矿区水田土壤重金属源解析[J]. 农业工程学报, 2022, 38(3): 212.ZHANG Wang, GAO Zhenran, TAI Yueying, et al. Source apportionment of heavy metals in paddy soil of karst mining area in Guizhou based on APCS-MLR receptor model [J]. Journal of Agricultural Engineering, 2022, 38(3): 212.
    [10] 卢鑫, 胡文友, 黄标, 等. 基于UNMIX模型的矿区周边农田土壤重金属源解析[J]. 环境科学, 2018, 39(3): 1421.LU Xin, HU Wenyou, HUANG Biao, et al. Source apportionment of heavy metals in farmland soil around mining area based on UNMIX model [J]. Environmental Sciences, 2018, 39 (3): 1421.
    [11] 杨梢娜, 金皋琪, 方琪钧, 等. 我国近10年土壤重金属污染源解析评述(2009―2018)[J]. 江苏农业科学, 2020, 48(20): 17.YANG Shaona, JIN Gaoqi, FANG Qijun, et al. Review of soil heavy metal pollution sources in China in recent 10 years (2009―2018) [J]. Jiangsu Agricultural Sciences, 2020, 48 (20): 17.
    [12] 蔡昂祖, 张海霞, 王小剑, 等. Unmix模型污染源解析研究进展及应用前景[J]. 土壤通报, 2021, 52(3): 747CAI Angzu, ZHANG Haixia, WANG Xiaojian, et al. Unmix model pollution source analysis research progress and application prospect [J]. Soil Bulletin, 2021, 52 (3): 747.
    [13] 霍明珠, 高秉博, 乔冬云, 等. 基于APCS-MLR受体模型的农田土壤重金属源解析[J]. 农业环境科学学报, 2021, 40(5): 978.HUO Mingzhu, GAO Bingbo, QIAO Dongyun, et al. Source apportionment of heavy metals in farmland soil based on APCS-MLR receptor model [J]. Journal of Agricultural Environmental Sciences, 2021, 40 (5): 978.
    [14] XU Lei, DAI Huiping, SKUZA L, et al. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites[J]. Chemosphere, 2021,285:131350.
    [15] Nemerow N L. Scientific Stream Pollution Analysis[M]. New York: McGraw-Hill Book Company, 1974.
    [16] HU Bifeng, JIA Xiaolin, HU Jie, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China[J]. International Journal of Environmental Research and Public Health, 2017,14(9):1042.
    [17] LIU Haiwei, ZHANG Yan, YANG Jiashuo, et al. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China[J]. The Science of the Total Environment, 2021, 767:144879.
    [18] 艾建超, 王宁, 杨净, 等. 基于UNMIX模型的夹皮沟金矿区土壤重金属源解析[J]. 环境科学, 2014, 35(9): 3530.AI Jianchao, WANG Ning, YANG Jing, et al. Source apportionment of soil heavy metals in Jiapigou gold mining area based on UNMIX model [J]. Environmental Science, 2014, 35(9): 3530.
    [19] WILDING L P. Spatial variability: Its documentation, accommodation and implication to soil survey[M]. Amsterdam: Elsevier Science Publishers, 1985.
    [20] 陈佳林, 李仁英, 谢晓金, 等.南京市绿地土壤重金属分布特征及其污染评价[J]. 环境科学, 2021, 42(2): 909.CHEN Jialin, LI Renying, XIE Xiaojin, et al. The distribution characteristics and pollution assessment of heavy metals in Nanjing green space soil [J]. Environmental Science, 2021, 42 (2): 909.
    [21] 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 等. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价[J]. 地理学报, 2017,72(9): 1680.MAIMAITITUERXUN Aizezi, AJIGULI Mumati, AINIWAER Maimaiti, et al. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bosten Lake Basin [J].Scientia Geographica Sinica, 2017, 72(9): 1680.
    [22] 王颜昊, 刘增辉, 柳新伟, 等. 黄河三角洲表层土壤重金属空间分布与潜在生态风险评价[J]. 水土保持学报, 2019, 33(3): 305.WANG Yanhao, LIU Zenghui, LIU Xinwei, et al. Spatial distribution and potential ecological risk assessment of heavy metals in topsoil of the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2019, 33(3): 305.
    [23] 王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 2021, 41(8): 3693.WANG Qiaolin, SONG Yuntao, WANG Chengwen, et al. Source analysis and spatial distribution of soil heavy metals in western Yunnan [J]. Environmental Sciences of China, 2021,41 (8): 3693.
    [24] LIU C, LIN K, KUO Y. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan[J]. Science of the Total Environment, 2003, 313(1/3): 77.
    [25] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 2020, 40(9): 3919.CHAI Lei, WANG Xin, MA Liang, et al. Source analysis of heavy metals in cultivated soil in Lanzhou based on PMF model [J]. China Environmental Science, 2020, 40 (9): 3919.
    [26] 蒋成爱, 吴启堂, 陈杖榴. 土壤中砷污染研究进展[J]. 土壤, 2004(3): 264.JIANG Chengai, WU Qitang, CHEN Zhangliu. Research progress of As pollution in soil [J]. Soil, 2004 (3): 264.
    [27] 吴攀, 刘丛强, 杨元根, 等. 矿山环境中(重)金属的释放迁移地球化学及其环境效应[J]. 矿物学报, 2001(2): 213.WU Pan, LIU Congqiang, YANG Yuangen, et al. Geochemistry and environmental effects of release and migration of ( heavy ) metals in mine environment [J]. Mineralogical Journal, 2001 (2): 213.
    [28] 沈洪艳, 安冉, 师华定, 等. 湖南省某典型流域农用地土壤重金属污染及影响因素[J]. 环境科学研究, 2021, 34(3): 715.SHEN Hongyan, AN Ran, SHI Huading, et al. Soil heavy metal pollution and influencing factors of agricultural land in a typical watershed in Hunan Province [J]. Environmental Science Research, 2021, 34 (3): 715.
    [29] 朱晓丽, 薛博倩, 李雪, 等. 基于PMF模型的宝鸡铅锌尾矿库周边农田土壤重金属源解析[J]. 西北大学学报(自然科学版), 2021, 51(1): 43.ZHU Xiaoli, XUE Boqian, LI Xue, et al. Based on PMF model, the source apportionment of heavy metals in farmland soil around Baoji lead-zinc tailings reservoir [J]. Journal of Northwest University (Natural Science Edition), 2021,51 (1): 43.
    [30] 马生明, 朱立新, 汤丽玲, 等. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估[J]. 岩矿测试, 2020, 39(2): 225.MA Shengming, ZHU Lixin, TANG Liling, et al. The speciation and ecological risk assessment of Hg and Cd in soils around towns and along rivers [J]. Rock and Mineral Testing, 2020, 39 (2): 225.
    [31] 李伟迪, 崔云霞, 曾撑撑, 等. 太滆运河流域农田土壤重金属污染特征与来源解析[J]. 环境科学, 2019, 40(11): 5073.LI Weidi, CUI Yunxia, ZENG Chengcheng, et al. Characteristics and sources of heavy metal pollution in farmland soils in the Taige Canal Basin [J]. Environmental Science, 2019, 40 (11): 5073.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈永贵,邹一,贺勇,付俊,吴灿萍.基于APCS-MLR模型和UNMIX模型的农田土重金属源解析[J].同济大学学报(自然科学版),2025,53(1):54~64

复制
分享
文章指标
  • 点击次数:89
  • 下载次数: 86
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2023-04-17
  • 在线发布日期: 2025-02-08
文章二维码