钢轨表面伤损的细粒度图像识别
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.同济大学 上海市轨道交通结构耐久与系统安全重点实验室,上海 201804;3.上海地铁维护保障有限公司工务分公司,上海 200233

作者简介:

周宇,工学博士,副教授,主要研究方向为钢轨伤损、轨道结构。E-mail: yzhou2785@tongji.edu.cn

中图分类号:

U216

基金项目:

上海市科委科技计划(20dz1203100);中央高校基本科研业务费(2022-5-ZD-04);浙江省交通运输厅科技计划(2023024)


Fine Grained Image Recognition for Rail Surface Defects
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Transit Structure Endurance and System Safety, Tongji University, Shanghai 201804, China;3.Public Works Branch of Shanghai Metro Maintenance Guarantee Co., Ltd., Shanghai 200233, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于智慧工务对钢轨轨面状态和伤损的精准识别、定量化修理等需求,结合深度学习和机器视觉,提出了钢轨轨面伤损细粒度图像识别与量化方法。通过采集轨面状态和伤损图像并实现伤损细粒度标注,建立轨面伤损RD-1 094数据集,其中的目标密度达到了每图22.9个。建立轨面伤损深度学习目标检测算法,通过对RD-1094数据集的训练和学习,实现了对0.5~30mm的剥离掉块、波长20~200mm的波磨等轨面伤损及其各自发展阶段特征的识别,达到毫米级细粒度。算法对单双排波磨、细小密集和轻重伤剥离掉块、单支和成片疲劳裂纹等能较好的兼容性,可以实现轨面光带形位、伤损尺寸、轻重伤总数、分布面积、波磨波长等状态和伤损的量化评估。

    Abstract:

    Based on intelligent engineering technology, precise identification of track defects and quantified repair issues, combined with deep learning and computer vision techniques, a method for fine-grained image recognition and intelligent evaluation of rail surface defects has been proposed. Rail surface Defects dataset (named RD-1 094 dataset) was established by collecting images of rail surface defects and realizing fine-grained annotation of defects. The target density of the dataset reaches 22.9 targets (defects) per image. Moreover, a target detection algorithm with the ability of deep-learning for rail surface defects was established. Through training and learning to the RD-1094 Dataset, it achieved millimeter-level fine-grained recognition, such as realizing the recognition of spalling with size in 0.5 ~ 30 mm, corrugation with a wavelength in 20 ~200mm and other rail defects with their own growth situation. The algorithm has good generalization compatibility on single or double row corrugations, small or dense spallings in different levels, fatigue cracks with a single piece or with obscure distribution on the rail surface. It can measure the shape and localization of contact band on the rail surface, the size of the defects, the total number of defects in different levels, cracking area, the wavelength of corrugation and other quantitative evaluation metrics.

    参考文献
    相似文献
    引证文献
引用本文

周宇,姚心弦,姚凯洲,陆乾晖,张子豪.钢轨表面伤损的细粒度图像识别[J].同济大学学报(自然科学版),2025,53(1):99~106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-19
  • 在线发布日期: 2025-02-08
文章二维码