使用高阶无条件稳定显式算法的实时混合模拟稳定性
作者:
作者单位:

长安大学 建筑工程学院,陕西 西安 710061

作者简介:

傅 博,副教授,博士生导师,工学博士,主要研究方向为抗震与数值积分算法。 E-mail:90_bofu@chd.edu.cn

通讯作者:

陈 瑾,副教授,硕士生导师,工学博士,主要研究方向为轨道减隔振及数值积分算法。 E-mail:chenjin5310@126.com

中图分类号:

TU317

基金项目:

国家自然科学基金(51908048,52108432,52478124);长安大学中央高校基本科研业务费专项资金(300102283201);长安大学青年学者学科交叉团队建设项目(300104240923)


Stability of Real-Time Hybrid Simulation Using High-Order Unconditionally Stable and Explicit Algorithms
Author:
Affiliation:

School of Civil Engineering, Chang’an University, Xi’an 710061, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了提高实时混合模拟(RTHS)计算效率、计算精度和稳定性,基于具有二阶精度的无条件稳定显式Chen?Ricles(CR)和Chang积分算法,提出具有高阶精度的无条件稳定新型双显式(NDE)和新型半显式(NSE)积分算法。基于离散控制理论,推导出使用两种高阶算法的RTHS系统的闭环离散传递函数,分析了时滞、阻尼比、刚度比例系数、积分算法等对RTHS系统稳定性的影响,并以时滞微分方程推导出的近似解和精确解作为参照。分析结果表明,时滞会降低RTHS系统的稳定性;增大刚度比例系数会降低不同分析结果间的差异;增大阻尼比会提升RTHS系统的稳定性,同时会增大考虑积分算法与不考虑积分算法的稳定性差异,也会增大使用不同积分算法的稳定性差异;使用两种高阶算法的RTHS系统稳定性优于使用两种二阶算法的RTHS系统稳定性。

    Abstract:

    To provide high computational efficiency, accuracy and stability integration algorithms for real-time hybrid simulation (RTHS), the high order accurate, unconditionally stable new dual-explicit (NDE), and new semi-explicit (NSE) algorithms were developed based on the second-order accurate unconditionally stable and explicit Chen-Ricles (CR) and Chang algorithms. Based on the discrete control theory, the closed-loop discrete transfer function of the RTHS system using the two new algorithms were derived. The influences of time delay, damping ratio, stiffness proportional ratio, and integration algorithm on the stability of the RTHS system were investigated. Additionally, the approximation solution and accurate solution derived from the delay differential equation were also adopted for reference. The analytical results show that the time delay decreases the stability of the RTHS system. Increasing the stiffness proportional ratio reduces the difference between different analysis results. Increasing the damping ratio improves the stability of the RTHS system, enlarges the difference between the stability with and without considering the integration algorithm, and magnifies the difference between the stability using different integration algorithms. The stability of the RTHS system using the two high-order accurate integration algorithms is superior to that of the two second-order accurate integration algorithms.

    参考文献
    [1] 吴斌, 王贞, 许国山, 等. 工程结构混合试验技术研究与应用进展[J]. 工程力学, 2022, 39(1): 1.WU Bin, WANG Zhen, XU Guoshan, et al. Research and application progress in hybrid testing of engineering structures[J]. Engineering Mechanics, 2022, 39(1): 1.
    [2] DONG X, TANG Z, DU X. State of the art and development trends in numerical simulation for real-time hybrid simulation[J]. Earthquake Engineering and Resilience, 2022, 1: 245.
    [3] TIAN Y, SHAO X, ZHOU H, et al. Advances in real-time hybrid testing technology for shaking table substructure testing[J]. Frontiers in Built Environment, 2020, 6: 123.
    [4] KOLAY C, RICLES J M. Assessment of explicit and semi-explicit classes of model-based algorithms for direct integration in structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2016, 107: 49.
    [5] ZHU F, WANG J, JIN F, et al. Real-time hybrid simulation of full-scale tuned liquid column dampers to control multi-order modal responses of structures[J]. Engineering Structures, 2017, 138: 74.
    [6] KOLAY C, RICLES J M. Force-based frame element implementation for real-time hybrid simulation using explicit direct integration algorithms[J]. Journal of Structural Engineering, 2018, 144(2): 04017191.
    [7] FU B, JIANG H, WU T. Experimental study of seismic response reduction effects of particle damper using substructure shake table testing method[J]. Structural Control and Health Monitoring, 2019, 26(2): e2295.
    [8] CHANG S. Explicit pseudodynamic algorithm with unconditional stability[J]. Journal of Engineering Mechanics, 2002, 128 (9): 935.
    [9] CHEN C, RICLES J M. Development of direct integration algorithms for structural dynamics using discrete control theory[J]. Journal of Engineering Mechanics, 2008, 134(8): 676.
    [10] CHANG S. A dual family of dissipative structure-dependent integration methods for structural nonlinear dynamics[J]. Nonlinear Dynamics, 2019, 98 (1): 703.
    [11] FU B, FENG D, JIANG H. A new family of explicit model-based integration algorithms for structural dynamic analysis[J]. International Journal of Structural Stability and Dynamics, 2019, 19(5): 1950053.
    [12] TANG Y, REN D, QIN H, al et , New family of explicit structure-dependent integration algorithms with controllable numerical dispersion[J]. Journal of Engineering Mechanics, 2021, 147(3): 04021001.
    [13] 傅博, 张付泰, 陈瑾. 一种新型高精度半显式基于模型的积分算法[J]. 同济大学学报(自然科学版), 2023, 51(5): 738.FU Bo, ZHANG Futai, CHEN Jin. A new semi-explicit model-based integration algorithm with high accuracy[J]. Journal of Tongji University (Natural Science), 2023, 51(5): 738.
    [14] FU B, ZHANG F T. A dual-explicit model-based integration algorithm with higher-order accuracy for structural dynamics[J]. Applied Mathematical Modelling, 2022, 110: 513.
    [15] WU B, DENG L, YANG X. Stability of central difference method for dynamic real time substructure testing[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(14): 1649.
    [16] 彭天波, 谢馨, 曾忠, 等. 采用Chang 方法的混合试验的稳定性和精度[J]. 同济大学学报(自然科学版), 2014, 42(12): 1790.PENG Tianbo, XIE Xin, ZENG Zhong, et al. Stability and accuracy of shaking table-actuator hybrid test with Chang method[J]. Journal of Tongji University (Natural Science), 2014, 42(12): 1790.
    [17] CHEN C, RICLES J M. Stability analysis of SDOF real-time hybrid testing systems with explicit integration algorithms and actuator delay[J]. Earthquake Engineering and Structural Dynamics, 2010, 37(4): 597.
    [18] ZHU F, WANG J T, JIN F, et al. Stability analysis of MDOF real-time dynamic hybrid testing systems using the discrete-time root locus technique[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(2): 221.
    [19] 傅博, 蒋欢军. 使用新算法的剪切型子结构振动台试验稳定性[J]. 同济大学学报(自然科学版), 2016, 44(8): 1160.FU Bo, JIANG Huanjun. Stability of shear-type substructure shaking table testing method using a new algorithm[J]. Journal of Tongji University (Natural Science), 2016, 44(8): 1160.
    [20] 傅博, 蒋欢军. 具有高稳定性的剪切型子结构振动台试验[J]. 同济大学学报(自然科学版), 2017, 45(11): 1602.FU Bo, JIANG Huanjun. Shear-type substructure shaking table testing method with high stability[J]. Journal of Tongji University (Natural Science), 2017, 45(11): 1602.
    [21] FU B, KOLAY C, RICLES J, et al. Stability analysis of substructure shake table testing using two families of model-based integration algorithms[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105777.
    [22] ZHOU H, SHAO X, ZHANG B, et al. Relative stability analysis for robustness design of real-time hybrid simulation [J]. Soil Dynamics and Earthquake Engineering, 2023, 165: 107681.
    [23] WALLACE M I, SIEBER J, NEILD S A, et al. Stability analysis of real-time dynamic substructuring using delay differential equations[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(15): 1817.
    相似文献
    引证文献
引用本文

傅博,张付泰,陈瑾.使用高阶无条件稳定显式算法的实时混合模拟稳定性[J].同济大学学报(自然科学版),2025,53(2):206~213

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-04
  • 在线发布日期: 2025-03-07
文章二维码