基于反事实推断的自动驾驶路测险态场景推演
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.交通运输部 公路科学研究院,北京 100088;3.交通运输部 规划研究院,北京 100028

作者简介:

涂辉招,教授,博士生导师,工学博士,主要研究方向为交通风险管理,智能网联汽车与智慧交通,交通行为分析和交通规划等。E-mail:huizhaotu@tongji.edu.cn

通讯作者:

王万锦,工学硕士,主要研究方向为交通规划,智慧网联汽车与智慧交通。 E-mail:wanjin.wang@foxmail.com
郭静秋,副教授,经济学博士,主要研究方向为驾驶行为建模,交通经济学等。 E-mail: guojingqiu@hotmail.com

中图分类号:

U491

基金项目:

上海市科委项目(22dz1203400);国家自然科学基金(52372339)


Autonomous Driving Road Test Risk Scenario Inference Based on Counterfactual Analysis
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Research Institute of Highway Ministry of Transport, Beijing 100088, China;3.Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以自动驾驶接管案例数据为基础,辨析接管干预类型及其与场景要素的关系,构建自动驾驶路测信任接管、避险接管及优化接管3类险态场景;通过搭建CARLA?SUMO联合仿真平台,以反事实推断方法还原险态场景,利用路测实际数据训练自动驾驶车辆模型,并推演险态场景下自动驾驶运行状况,从安全、效率、舒适度等维度提出自动驾驶智能行驶水平评价指标。分析表明,反事实推断方法在实现自动驾驶路测险态场景推演方面具有优异表现;同类险态场景下自动驾驶小客车智能行驶水平优于卡车;不同类险态场景的场景要素差异性显著,且相较于其他类型接管场景,避险接管场景自动驾驶智能行驶水平更为可靠。

    Abstract:

    Based on the data of takeover cases in autonomous driving road testing, this paper analyzes the types of takeover interventions, and sets up three types of risky scenarios: trust, risk-avoidance, and optimization takeovers. By developing a CARLA-SUMO joint simulation platform under the OpenCDA framework and using the counterfactual inference method, the operating conditions of autonomous driving in risky scenarios are deduced from the road-testing datasets. From the perspectives of safety, efficiency, comfort, etc., multi-dimensional evaluation indicators for the intelligent driving level of autonomous driving are proposed. The results show that the counterfactual inference method is capable of achieving the deduction of risky scenarios under the takeover conditions. In similar risky scenarios, the intelligent driving of autonomous passenger cars is better than that of trucks. The differences in fundamental elements and operational indicators among risky scenarios are significant, and intelligent driving in risk-avoidance takeover scenarios is more reliable compared to trust takeover scenarios.

    参考文献
    [1] 马艳. 智能网联汽车进入发展新阶段 [N]. 中国工业报, 2023-09-22(4).MA Yan. The new development stage of intelligent connected vehicles [N]. China Industrial News, 2023-09-22(4).
    [2] 涂辉招, 崔航, 鹿畅, 等. 面向自动驾驶路测驾驶能力评估的避险脱离率模型 [J]. 同济大学学报(自然科学版), 2020, 48(11): 1562.TU Huizhao, CUI Hang, LU Chang, et al. A risk-avoidance disengagement frequency model for assessing driving ability of autonomous vehicles in road testing [J]. Journal of Tongji University (Natural Science), 2020, 48(11): 1562.
    [3] 余荣杰,田野,孙剑. 高等级自动驾驶汽车虚拟测试:研究进展与前沿 [J]. 中国公路学报, 2020, 33(11): 125.YU Rongjie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers [J]. China Journal of Highway and Transport, 2020, 33(11): 125.
    [4] PEREIRA J L, ROSSETTI R J. An integrated architecture for autonomous vehicles simulation [C]// Proceedings of the 27th annual ACM symposium on applied computing. Riviere: ACM Symposium, 2012:1-8.
    [5] 康诚,严欣,唐晓峰. 智能网联汽车自动驾驶仿真测试技术研究综述 [J]. 时代汽车, 2022(22): 3.KANG Cheng, YAN Xin, TANG Xiaofeng. Summary of research on simulation test technology of intelligent networked vehicle automatic driving [J]. Times Automobile, 2022 (22): 3.
    [6] 清华大学苏州汽车研究院, 广汽研究院智能网联技术研发中心, 中国汽车技术研究中心智能汽车研究室暨汽车软件测评中心, 等. 中国自动驾驶仿真技术研究报告 [R]. 苏州: 清华大学苏州汽车研究院, 2019.Tsinghua University Suzhou Automotive Research Institute, Gac Research Institute Intelligent Connected Technology R&D Center, China Automotive Technology Research Center Intelligent Vehicle Research Laboratory and Automotive Software Testing Center, et al. Research report on autonomous driving simulation technology in China [R]. Suzhou: Tsinghua University Suzhou Automotive Research Institute, 2019.
    [7] LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using sumo [C]// Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Maui: IEEE, 2018:1-10.
    [8] 徐向阳, 胡文浩, 董红磊, 等. 自动驾驶汽车测试场景构建关键技术综述 [J]. 汽车工程, 2021, 43(4): 610.XU Xiangyang, HU Wenhao, DONG Honglei, et al. Review of key technologies for autonomous vehicle test scenario construction [J]. Automotive Engineering, 2021, 43(4): 610.
    [9] 张坤鹏,常成,王世璞,等. 自动驾驶汽车仿真器综述:能力、挑战和发展方向 [J]. 交通运输工程与信息学报, 2024, 22(1): 1.ZHANG Kunpeng, CHANG Cheng, WANG Shipu, et al. A review of autonomous vehicle simulators: capabilities, challenges, and development directions [J]. Journal of Transportation Engineering and Informatics, 2024, 22(1): 1.
    [10] MARKETAKIS Y, TZANAKIS M, TZITZIKAS Y. PreScan: towards automating the preservation of digital objects [C]// Proceedings of the International Conference on Management of Emergent Digital Ecosystems. Riviere: ACM Symposium, 2009:1-7.
    [11] DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: an open urban driving simulator [C]// Proceedings of the Conference on Robot Learning. Mountain View: CoRL, 2017:1-12.
    [12] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529.
    [13] WANG J, ZHANG Q, ZHAO D, et al. Lane change decision-making through deep reinforcement learning with rule-based constraints [C]// Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN) . Budapest: IEEE, 2019:1-10.
    [14] 蒋晓蓓, 王武宏, 郭宏伟, 等. 人车路系统驾驶行为分析与安全支持[M].北京:化学工业出版社,2020.JIANG Xiaopei, WANG Wuhong, GUO Hongwei, et al. Driver behavior analysis and safety support in driver-vehicle-environment systems [M]. Beijing:Chemical Industry Press, 2020.
    [15] ALGHODHAIFI H, LAKSHMANAN S. Autonomous vehicle evaluation: a comprehensive survey on modeling and simulation approaches [J]. IEEE Access, 2021, 9: 151531.
    [16] SCHWALL M, DANIEL T, VICTOR T, et al. Waymo public road safety performance data [J]. arXiv preprint arXiv:2020:201100038.
    [17] 朱冰,张培兴,赵健,等. 基于场景的自动驾驶汽车虚拟测试研究进展 [J]. 中国公路学报, 2019, 32(6): 1.ZHU Bing, ZHANG Peixing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles [J]. China Journal of Highway and Transport, 2019, 32(6): 1.
    [18] NAJM W G, SMITH J D, YANAGISAWA M. Pre-crash scenario typology for crash avoidance research [R]. Washington DC: NHTSA, 2007.
    [19] 蔡博, 陈韬, 回春, 等. 商用车AEB系统测试场景构建及仿真研究 [J]. 公路与汽运, 2021 (1): 9.CAI Bo, CHEN Tao, HUI Chun, et al. Construction and simulation research of AEB system testing scenarios for commercial vehicles [J]. Highway and Automotive Transport, 2021 (1): 9.
    [20] 涂辉招, 鹿畅, 陆淼嘉, 等. 基于避险脱离的自动驾驶路测安全影响因素 [J]. 吉林大学学报(工学版), 2023,67(6): 1.TU Huizhao, LU Chang, LU Miaojia, et al. Risk factors for autonomous vehicle road testing based on risk-avoiding disengagement [J]. Journal of Jilin University (Engineering and Technology ), 2023,67(6): 1.
    [21] 涂辉招, 王万锦, 乔鹏, 等. 自动驾驶卡车路测安全员接管干预行为解析 [J]. 吉林大学学报(工学版), 2024,68(6): 1.TU Huizhao, WANG Wanjin, QIAO Peng, et al. Analysis of drivers’ intervention behavior in autonomous truck road testing [J]. Journal of Jilin University (Engineering and Technology ), 2024,68(6): 1.
    [22] 李平飞, 金思雨, 胡文浩, 等. 用于自动驾驶仿真测试的车?车事故场景复杂度评价 [J]. 汽车安全与节能学报, 2022, 13(4): 697.LI Pingfei, JIN Siyu, HU Wenhao, et al. Complexity evaluation of vehicle-vehicle accident scenarios for autonomous driving simulation tests [J]. Journal of Automotive Safety and Energy, 2022, 13(4): 697.
    [23] XU R, GUO Y, HAN X, et al. OpenCDA: an open cooperative driving automation framework integrated with co-simulation [C]// Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) . Indianapolis: IEEE, 2021:1-9.
    [24] 刘潇. 面向高速环境的自动驾驶车辆行为决策、规划与控制研究 [D]. 杭州: 浙江大学, 2022.LIU Xiao. Research on decision-making, planning and control of autonomous vehicle in high speed driving environment [D]. Hangzhou: Zhejiang University, 2022.
    [25] WANG Y, WANG L, GUO J, et al. Ego-efficient lane changes of connected and automated vehicles with impacts on traffic flow [J]. Transportation Research Part C: Emerging Technologies, 2022, 138: 103478.
    [26] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations [J]. Physical Review E, 2000, 62(2): 1805.
    [27] OFFICIALS T. A policy on geometric design of highways and streets, 2011 [R].[S.l.]: AASHTO, 2011.
    [28] SAPTOADI H. Suitable deceleration rates for environmental friendly city driving [J]. International Journal of Research in Chemical, Metallurgical and Civil Engineering, 2017, 4(1): 2.
    [29] 徐哲, 刘豪, 党威, 等. 汽车制动舒适性控制研究综述 [J]. 科学技术与工程, 2022, 22(17): 6790.XU Zhe, LIU Hao, DANG Wei, et al. Review on automotive braking comfort control [J]. Science Technology and Engineering, 2022, 22(17): 6790.
    [30] 涂辉招, 刘芳丽, 崔航, 等. 实测数据驱动的自动驾驶道路测试驾驶模式辨别方法 [J]. 中国公路学报, 2021, 34(4): 231.TU Huizhao, LIU Fangli, CUI Hang, et al. Empirical data-driven identification of driving modes in autonomous vehicle road testing [J]. China Journal of Highway and Transport, 2021, 34(4): 231.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

涂辉招,刘建泉,卫雨桐,王万锦,郭静秋,汪敏.基于反事实推断的自动驾驶路测险态场景推演[J].同济大学学报(自然科学版),2025,53(2):223~232

复制
分享
文章指标
  • 点击次数:319
  • 下载次数: 340
  • HTML阅读次数: 314
  • 引用次数: 0
历史
  • 收稿日期:2024-05-11
  • 在线发布日期: 2025-03-07
文章二维码