基于混合变动专家权重的模糊零和博弈多目标规划模型
作者:
作者单位:

1.上海大学 管理学院,上海 200444;2.奥克兰大学 商学院,新西兰 奥克兰 1142

作者简介:

丁雪枫,副教授,管理学博士,主要研究方向为不确定性理论与推理,决策理论与方法,商业生态链管理等。E-mail: athena_tju@sina.com

通讯作者:

杨育豆,硕士生,主要研究方向为碳中和路径优化,模糊决策,竞争决策理论与方法等。E-mail: Prinber@shu.edu.cn

中图分类号:

C934

基金项目:

教育部人文社会科学研究规划基金(21YJA630010)


Fuzzy Zero-Sum Game Multi-Objective Programming Model Based on Hybrid Variable Expert Integration Weights
Author:
Affiliation:

1.School of Management,Shanghai University,Shanghai 200444,China;2.Business School,University of Auckland, Auckland, New Zealand 1142

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对现有模糊零和博弈难以适应环境复杂度变化及忽视收益矩阵构造的不足,提出了一种基于混合动态专家集成权重确定模型的T阶球形模糊零和博弈多目标求解方法,以帮助博弈方在资源总量保持相对恒定且局中各方追求自身利益最大化的情境下选择最优竞争策略。首先,提出了一种同时考虑客观个体和主观评价信息的混合变动专家集成权重计算模型,该机制下得到的专家权重会随专家的主观评价信息而变化,更接近实际情况。其次,利用加权平均法搭建了T阶球形模糊零和博弈多目标规划模型,该方法不受策略数量的影响,且求得的最优混合策略能反映博弈各方竞争策略的具体可行性和分歧程度。最后,通过实例计算和对比分析,验证了所提出方法的实用性和优越性。结果表明,所提出的模型具有决策效率高、计算复杂度低、受方案数量影响小的特点,且得到的概率形式的混合解可以有效地反映策略间的差异程度,当最优策略失效时可提供替代建议,有助于避免重复决策,浪费决策资源。

    Abstract:

    Existing studies on fuzzy zero-sum games fail to account for variations in environmental complexity and overlook the specific process of construction payoff matrices. To address these limitations, a multi-objective programming model for solving T-spherical fuzzy zero-sum game based on hybrid variable experts integration weights is proposed in this paper, which is able to help players choose the optimal competition strategy when the total amount of resources remains relatively constant and all parties in the game pursue the maximization of their own interests. First, a novel dynamic expert integration weight calculation model, considering objective individual and subjective evaluation information simultaneously, is devised. The expert weights obtained by the above model can vary with subjective evaluation information provided by experts, which are closer to the actual practices. Then, in virtue of the weighted average method, a multi-objective programming framework for T-spherical fuzzy zero-sum game is formulated to determine the optimal mixed strategies for players, which can present the specific feasibility and divergence degree of each competitive strategy and be less impacted by the number of strategies. Finally, an illustrative example and several comparative analyses validate the reasonability and effectiveness of the proposed model. The results demonstrate that the proposed model offer higher decision-making efficiency, lower computational complexity, and reduced sensitivity to the number of alternatives. Additionally, the hybrid solution, expressed as probabilities, can effectively reflect the differences between alternatives. When the optimal strategy fails, alternative suggestions can be provided, helping to avoid redundant decision-making and minimizing resource wastage.

    参考文献
    [1] DING X F, LIU H C. A new approach for emergency decision-making based on zero-sum game with Pythagorean fuzzy uncertain linguistic variables[J]. International Journal of Intelligent Systems, 2019, 34(7): 57.
    [2] YANG Y D, DING X F. A q-rung orthopair fuzzy non-cooperative game method for competitive strategy group decision-making problems based on a hybrid dynamic experts’ weight determining model[J]. Complex & Intelligent Systems, 2021, 7: 3077.
    [3] ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3): 338.
    [4] GRZEGORZEWSKI P. Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric[J]. Fuzzy Sets and Systems, 2004, 148(2): 319.
    [5] MAHMOOD T, ULLAH K, KHAN Q, et al. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets[J]. Neural Computing & Applications, 2019, 31: 7041.
    [6] CHAI J H, SU Y, LU S C. Linguistic Z-number preference relation for group decision making and its application in digital transformation assessment of SMEs [J]. Expert Systems with Applications, 2023, 213: 118749.
    [7] LIU P D, KHAN Q, MAHMOOD T, et al. T-Spherical fuzzy power Muirhead mean operator based on novel operational laws and their application in multi-attribute group decision making[J]. IEEE Access, 2019, 7: 22613.
    [8] JU Y B, LIANG Y Y, LUO C, et al. T-spherical fuzzy TODIM method for multi-criteria group decision-making problem with incomplete weight information [J]. Soft Computing, 2021, 25: 2981.
    [9] NADLER S B. Hyperspaces of sets[M]. New York: Marcel Dekker Incorporation, 1978.
    [10] CHEN Y W, LARBANI M. Two-person zero-sum game approach for fuzzy multiple attribute decision making problems[J]. Fuzzy Sets and Systems, 2006, 157(1): 34.
    [11] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87.
    [12] YAGER R R. Pythagorean fuzzy subsets [J].2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).[S.l.]:IFSA/NAFIPS, 2013: 57-61.
    [13] MAHMOOD T. A novel approach towards bipolar soft sets and their applications[J]. Journal of Mathematics, 2020,2020(1): 4690808.
    [14] CUONG B C, KREINOVICH V. Picture fuzzy sets-a new concept for computational intelligence problems[C].2013 Third World Congress on Information and Communication Technologies (WICT 2013). Hanoi:WITC, 2013: 1-6.
    [15] RIAZ M, GARG H, FARID H, et al. Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures[J]. Computer Modeling in Engineering & Sciences, 2021, 127(2): 771.
    [16] 南江霞,汪亭,王冠雄,等. 异类值多目标二人零和约束矩阵对策及求解方法[J]. 模糊系统与数学, 2016, 30(4): 121.Jiangxia NAN, WANG Ting, WANG Guanxiong, et al. The method for solving multi-objective zero-sum and constrained matrix games with heterogeneous values[J]. Fuzzy Systems and Mathematics, 2016, 30(4): 121.
    [17] NAN J X, LI D F, ZHANG M J. A lexicographic method for matrix games with payoffs of triangular intuitionistic fuzzy numbers [J]. International Journal of Computational Intelligence Systems, 2010, 3(3): 280.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

丁雪枫,杨育豆.基于混合变动专家权重的模糊零和博弈多目标规划模型[J].同济大学学报(自然科学版),2025,53(2):306~315

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-26
  • 在线发布日期: 2025-03-07
文章二维码