水平井网地浸采铀溶浸范围井储耦合和粒子示踪模拟
作者:
作者单位:

1.河海大学 地球科学与工程学院,江苏 南京 211100;2.核工业北京化工冶金研究院,北京101149;3.南京大学 地球科学与工程学院,江苏 南京 210023

作者简介:

杨 蕴,教授,工学博士,主要研究方向为复杂条件下地下水数值模拟、优化和软件系统开发。 E-mail: yy_hhu@hhu.edu.cn

中图分类号:

P641

基金项目:

核技术创新联合基金(U2167212);江苏省基础研究计划面上项目(BK20211208)


Quantitative Characterization of Horizonal Well Leaching Range Using Coupled Well-Reservoir Coupling Model and Particle Tracing Technology
Author:
Affiliation:

1.School of Earth Science and Engineering, Hohai University, Nanjing 211100, China;2.Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101149, China;3.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [19]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探索水平井技术在我国砂岩型铀矿地浸采铀领域的可行性,解析水平井网地浸采铀水动力过程和定量刻画溶浸范围是科学评判的基础和前提。水平井网地浸模式下地下水动力过程涉及井筒流与储层达西流的耦合(井储耦合),通过研发井储耦合数值模拟技术,构建水平井网地浸采铀地下水动力学模型,开发基于MODPATH粒子示踪模拟和Alpha-shape算法的溶浸范围自动提取技术,基于理想模型和实际场地模型的应用验证,实现地浸开采过程中溶浸液流动状态和溶浸范围的模拟刻画。研究结果表明:相比于传统的MODFLOW模型,井储耦合模型可刻画水平井注液过程中井储交互流量及变化,且交互流量值与储层渗透系数K值变化呈正相关;在井储耦合渗流模拟的基础上,可自动提取模拟时段内被抽液井有效捕捉的粒子迹线所包络的范围,识别抽液井不同捕获流量贡献率对应的溶浸范围,95%流量贡献率对应的溶浸范围为100%流量贡献率对应范围体积的40%,表明溶浸液从水平井注入储层至浸出液被竖井抽出,地浸开采前期流量交互主要集中于溶浸范围内部,而外部迹线的流速低,对抽液流量的贡献率低且浸出率低。

    Abstract:

    To explore the feasibility of horizontal well technology in in-situ leaching (ISL) of sandstone-type uranium mines in China, it is essential to analyze the hydrodynamic processes and quantitatively characterize the leaching range. The hydrodynamic processes of groundwater in the horizontal well ISL involve well-reservoir coupling simulation, which refers to the coupling of wellbore turbulence and reservoir Darcy flow. By developing numerical simulation techniques for well-reservoir coupling, constructing a groundwater flow model for uranium leaching in the horizontal well network, and creating automatic extraction techniques for the leaching range using particle tracking simulation with MODPATH and the Alpha-shape algorithm, the simulation and characterization of the flow state of the solution and the leaching range during ISL can be achieved. The research results indicate that, compared to the traditional MODFLOW model, the well-reservoir coupling model more accurately depict the interaction flow rate and its variations between the well and reservoir during the injection process in the horizontal well, and the interaction flow rate is positively correlated with the permeability coefficient (K) of the reservoir. Based on the well-reservoir coupling simulation, the range enveloping the particle trajectories captured by the pumping wells during the simulation period can be automatically extracted. By identifying the leaching range corresponding to the flow rate contribution of pumping wells, it is determined that the leaching range corresponding to a 95% flow rate contribution is 40% of the volume corresponding to a 100% flow rate contribution. This indicates that the flow interaction, from the injection of leaching solution from the horizontal well into the reservoir to the extraction of pregnant solution by vertical wells, is primarily concentrated within the leaching range in the early stage of ISL. The flow velocity along the outer trajectories is lower, resulting in a reduced contribution to both the pumping flow rate and the leaching rate.

    参考文献
    [1] 苏学斌. 钱家店矿床原地浸出采铀工程与实践[M]. 北京:中国原子能出版社, 2017.SU Xuebin. Qianjiadian mine in-situ leaching uranium mining project and practice [M]. Beijing: China Atomic Energy Press, 2017.
    [2] 张金带, 李子颖, 苏学斌,等. 核能矿产资源发展战略研究[J]. 中国工程科学, 2019, 21(1): 113.ZHANF Jindai, LI Ziying, SU Xuebin, et al. Development strategy of nuclear energy mineral resources [J]. Strategic Study of CAE, 2019, 21(1): 113.
    [3] 蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6): 1051.CAI Yuqi, ZHANG Jindai, LI Ziying, et al. Outline of Uranium resources characteristics and metallogenetic regularity in China [J]. Acta Geologica Sinica, 2015, 89(6): 1051.
    [4] 邱文杰,刘正邦,杨蕴. 砂岩型铀矿CO2+O2地浸采铀的反应运移数值模拟[J]. 中国科学(技术科学), 2022, 52(4): 627.QIU Wenjie, LIU Zhengbang, YANG Yun, et al. Reactive transport numerical modeling of CO2+O2 in-situ leaching in sandstone-type uranium ore [J]. Scientia Sinica(Technologica), 2022, 52(4): 627.
    [5] 纪文贵,罗跃,刘金辉,等. 考虑渗透系数不确定性的地浸过程溶浸范围随机模拟[J]. 原子能科学技术, 2023, 57(6): 1099.JI Wengui, LUO Yue, LIU Jinhui, et al. Stochastic simulation of leaching range in in-situ process considering uncertainty of permeability coefficient [J]. Atomic Energy Science and Technology, 2023, 57(6): 1099.
    [6] 孙峰, 逄铭玉,张启汉,等. 水平井压裂多裂缝同步扩展数值模拟[J]. 中南大学学报(自然科学版), 2017,48(7): 1083.ZHANG Feng, PANG Mingyu, ZHANG Qihan, et al. Numerical simulation of simultaneous propagation of multiple fractures in horizontal well [J]. Journal of Central South University(Science and Technology), 2017,48(7): 1083.
    [7] 郭建春,马莅,卢聪,等. 中国致密油藏压裂驱油技术进展及发展方向[J], 石油学报, 2022, 43(12): 1788.GUO Jianchun, MA Li, LU Cong, et al. Process and development directions of fracturing flooding technology for tight reservoirs in China [J]. Acta Petrolei Sinica, 2022, 43(12): 1788.
    [8] 高成路,李术才,周宗青,等. 岩体水力压裂应力—渗流耦合近场动力学模拟[J], 同济大学学报(自然科学版), 2022, 5(4): 470.GAO Chenglu, LI Shucai, ZHOU Zongqing, et al. Peridynamics simulation of stress-seepage coupling in hydraulic fracturing of rock mass [J]. Journal of Tongji University (Natural Science), 2022, 5(4): 470.
    [9] 张连平,王世民. 封闭地热系统水平井采热储层内渗流与传热的有限元模拟[J], 地球物理学报, 2023, 66(1): 314.ZHANG Lianping, WANG Shimin. Finite-element modeling of porous flow and heat transfer in a reservoir with heat extraction by a horizontal well of a closed geothermal system [J]. Chinese Journal of Geophysics, 2023, 66(1): 314.
    [10] 程巍,雷洁珩,雷泽勇,等. 淹没水射流清洗地浸采铀生产井的数值模拟与分析[J]. 中南大学学报(自然科学版), 2020, 51(9): 2580.CHENG Wei, LEI Jiehang, LEI Zeyong, et al. Numerical simulation and analysis of in-situ leaching uranium production well cleaned by submerged water jet [J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2580.
    [11] 刘玉龙,扶海鹰,胡南,等. 强风化强氧化型砂岩铀矿组合浸出工艺及浸出动力学模型[J]. 中南大学学报(自然科学版), 2021, 52(11): 3783.LIU Yulong, FU Haiying, HU Nan, et al. Combined leaching process for strongly weathered and oxidized sandstone uranium ore and its kinetic model [J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3783.
    [12] 杨蕴,南文贵,邱文杰,等. 非均质矿层CO2+O2地浸采铀溶浸过程数值模拟与调控[J]. 水动力学研究与进展, 2022, 37(5): 639.YANG Yun, Wengui NAN , QIU Wenjie, et al. Numerical simulation and regulation of CO2+O2 in-situ leaching process in heterogeneous sandstone-type uranium ore [J]. Chinese Journal of Hydrodynamics, 2022, 37(5): 639.
    [13] 李召坤,周根茂,李坡,等. 地浸“水平井注—直井抽”井场流场数值模拟与井网优化[J]. 铀矿冶, 2021, 40(1): 18.LI Zhaokun, ZHOU Genmao, LI Po, et al. Numerical simulation and well pattern optimization of horizontal well injection-vertical well pumping in ISL flow field [J]. Uranium Mining and Metallurgy, 2021, 40(1): 18.
    [14] 常云霞,谭凯旋,张翀,等. 地浸采铀井场溶浸范围的地下水动力学控制模拟研究[J]. 南华大学学报(自然科学版), 2020, 34(5): 29.CHANG Yunxia, TAN Kaixuan, ZHANG Chong, et al. Simulation study on groundwater dynamic control of leaching range of in-situ uranium well field [J]. Journal of University of South China(Science and Technology), 2020, 34(5): 29.
    [15] 陈梦迪,姜振蛟,霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析[J]. 水文地质工程地质, 2023, 50(2): 63.CHEN Mengdi, JIANG Zhenjiao, HUO Chenchen, et al. Stochastic modeling of in-situ sandstone-type uranium leaching in response to uncertain and heterogeneous hydraulic conductivity[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 63.
    [16] 周义朋,黎广荣,徐玲玲,等. 地浸采铀钻孔过滤器对溶液渗流影响的数值模拟[J]. 东华理工大学学报(自然科学版), 2018, 41(4): 301.ZHOU Yipeng, LI Guangrong, XU Lingling, et al. Numerical simulation of influence of drilling filter on solution seepage during in-situ leaching of uranium [J]. Journal of East China University of Technology(Natural Science), 2018, 41(4): 301.
    [17] 陈茜茜,罗跃,李寻,等. 基于PHT3D软件的酸法地浸采铀过程模拟探讨[J]. 有色金属(冶炼部分), 2019(11): 32.CHEN Qianqian, LUO Yue, LI Xun, et al. Discussion on reactive transport modeling of in-situ uranium acid leaching with PHT3D [J]. Nonferrous Metals (Extractive Metallurgy), 2019(11): 32.
    [18] YAZIKOV V G, ROGOV Y I, ROGOV A Y. Technological wells schemes and location parameters optimization for uranium geotechnology[M]: [s.l.]: Mine Planning and Equipment Selection,2000.
    [19] 阙为民,谭亚辉,曾毅群,等. 原地浸出采铀反应动力学和物质运移[M]: 北京:原子能出版社, 2002.QUE Weimin, TAN Yahui, ZENG Yiqun, et al. Reaction kinetics and mass transport of in-situ leaching of uranium [M]. Beijing: China Academic Journal Electronic Publishing House, 2002.
    [20] 程宗芳,阳奕汉,赖永春. 地浸工艺在铀矿冶中的应用及其效益分析[J]. 铀矿冶, 2007(4): 180.CHENG Zongfang, YANG Yihan, LAI Yongchun. Application of in-situ leaching technology in uranium mining & metallurgy and its benefit analysis[J]. Uranium Mining and Metallurgy, 2007(4): 180.
    [21] 周义朋,沈照理,孙占学,等. 应用粒子示踪模拟技术确定地浸采铀溶浸范围[J]. 中国矿业, 2015, 24(2): 117.ZHOU Yipeng, SHEN Zhaoli, SUN Zhanxue, et al. Application study on particle tracer technique to calculate the in-situ leaching area of uranium mining [J]. China Mining Magazine, 2015, 24(2): 117.
    [22] 吕国芳,郭和杰. 基于Alpha Shape的三维模型体积研究[J]. 计算技术与自动化, 2023, 42(1): 160.LV Guofang, GUO Hejie. Volume research of 3D model based on Alpha Shape [J]. Computing Technology and Automation, 2023, 42(1): 160.
    [23] HARBAUGH A W, BANTA E R, HILL M C, et al. MODFLOW-2000, the U.S. Geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process [R]. Reston: U.S. Geological Survey, 2000.
    [24] VENNARD J K, STREET R L. Elementary fluid mechanics[M]. New York: John Wiley & Sons, Inc., 1961.
    [25] MANNING F S, THOMPSON R E. Oilfield processing of petroleum[M]. Tulsa, Oklahoma: PennWell Books, 1991.
    [26] 李庆,高祥伟,费鲜芸,等. 利用Alpha-shape算法进行树冠三维模型构建[J]. 测绘通报, 2018(12): 91.LI Qing, GAO Xiangwei, FEI Xianyun, et al. Construction of tree crown three-dimensional model using Alpha-shape algorithm [J]. Bulletin of Surveying and Mapping, 2018(12): 91.
    [27] 常勇, 刘玲. 岩溶地区水文模型综述[J]. 工程勘察, 2015, 43(3):37.CHANG Yong, LIU Ling. Review of karst hydrological models[J]. Geotechnical Investigation & Surveying, 2015, 43(3):37.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨蕴,左海啸,李召坤,张宇,常勇,祝晓彬,吴剑锋,吴吉春.水平井网地浸采铀溶浸范围井储耦合和粒子示踪模拟[J].同济大学学报(自然科学版),2025,53(3):503~512

复制
分享
文章指标
  • 点击次数:26
  • 下载次数: 61
  • HTML阅读次数: 6
  • 引用次数: 0
历史
  • 收稿日期:2023-07-14
  • 在线发布日期: 2025-04-02
文章二维码