基于仿真优化的超大城市内涝场景交通疏导优先级评估
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点实验室,上海 201804;2.广州市城市规划勘测设计研究院 创新中心,广州 510060;3.广州市资源规划和海洋科技协同创新中心,广州 510060

作者简介:

朱玉寒,博士生,主要研究方向为中观交通仿真、代理优化。E-mail:zhuyuhan@tongji.edu.cn

通讯作者:

邓兴栋,教授级高级工程师,工学博士,主要研究方向为城市与交通规划、交通数字治理。 E-mail:dxd1005@163.com

中图分类号:

U491.5;U495

基金项目:

国家杰出青年科学基金(52125208);城市公共交通智能化交通运输行业重点实验室开放课题(202001);国家自然科学基金面上项目(52072129);广东省城市感知与监测预警企业重点实验室基金(2020B121202019);广州市资源规划和海洋科技协同创新中心项目(2023B04J0301,2023B04J0046);科技创新2030—“新一代人工智能”重大项目(2022ZD0115600)


Simulation-based Optimization for Priority Assessment of Traffic Dredging in Megacity Waterlogging Sections
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Innovation Center, Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, China;3.Guangzhou Collaborative Innovation Center for Resource Planning and Marine Science & Technology, Guangzhou 510060, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有研究对动态交通系统刻画精度低、忽视内涝点位间相互作用等不足,提出一种基于仿真优化的城市内涝疏导优先级评估方法。以最大化路网用户平均行程时间为目标,以内涝路段为决策变量构建0?1规划问题;将疏导优先级评估转化为离散优化问题,通过搜索疏导点位组合刻画点位间相互作用。采用中观交通仿真软件DynusT进行路网精细化建模,并利用快速机器学习模型作为代理,实现仿真优化闭环算法,求解路段疏导优先级。最后,以广州市中心城区为例构建仿真模型并进行验证。结果表明,按优先级排序治理后,路网用户平均行程速度较现有方案提升28.72%,验证了方法的准确性。

    Abstract:

    Addressing the limitations of existing research, such as low precision in depicting dynamic traffic systems and insufficient consideration of interactions between flood points, this study presents a simulation-based optimization method for assessing urban flood mitigation priorities. By maximizing the average travel time of road network users as the objective and using flood-affected road sections as decision variables, a 0-1 programming problem is formulated to transform the priority assessment into a discrete optimization problem. The interactions between flood points are captured through the search for optimal mitigation point combinations. A mesoscopic traffic simulation tool, DynusT, is employed for detailed road network modeling, and a fast machine learning model is utilized as a surrogate to enable a closed-loop simulation optimization algorithm for determining mitigation priorities. The method is validated through a case study in the central urban area of Guangzhou. Results demonstrate that implementing mitigation measures based on the priority ranking improve the average travel speed by 28.72% compared to existing solutions, confirming the accuracy of the method .

    参考文献
    相似文献
    引证文献
引用本文

朱玉寒,邓兴栋,狄德仕,李冠耀,李政,田野.基于仿真优化的超大城市内涝场景交通疏导优先级评估[J].同济大学学报(自然科学版),2025,53(4):574~581

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码