交通事故致因知识图谱构建及风险因素挖掘
CSTR:
作者:
作者单位:

吉林大学 交通学院,长春 130025

作者简介:

王占中,教授,博士生导师,工学博士,主要研究方向为物流资源优化技术。E-mail: wangzz@jlu.edu.cn

通讯作者:

中图分类号:

U491.31

基金项目:

吉林省自然科学基金面上项目(20230101112JC)


Traffic Accident Causation Knowledge Graph Construction and Risk Factor Mining
Author:
Affiliation:

Transportation College, Jilin University, Changchun 130025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用交通事故调查报告中的数据,构建交通事故致因知识图谱并分析风险因素。首先,基于微调通用信息抽取统一框架预训练模型,构建适用于低数据量的交通事故致因命名实体识别模型,并生成实体集;其次,通过结构化处理和本体构建,利用图数据库Neo4j存储交通事故致因知识图谱,实现可视化;再次,基于专家经验和预训练语言文本分类模型,对交通事故致因实体进行标准化;最后,构建基于交通事故致因图谱的风险因素分析方法,通过分析标准化实体的类型分布和度分布,挖掘各因素对事故的触发特征与贡献,并进行关联规则挖掘。这些方法和分析结果提供了对历史事故风险因素的深入理解与探索。

    Abstract:

    In this paper, we use data from traffic accident investigation reports to construct a traffic accident causation knowledge graph and analyze risk factors. Firstly, we construct the recognition model of named entities of traffic accident causation applicable to low data volume based on the fine-tuned UIE pre-training model for the generation of the entity set. Secondly, through the structured processing and ontology construction, the graph database Neo4j is used to store the traffic accident causation knowledge graph for visualization. Thirdly, based on the expert experience and pre-trained language text classification model, the traffic accident causation entities are standardized. Finally, a risk factor analysis method based on the traffic accident causation graph is constructed to mine triggering characteristics and contributions of each factor by analyzing the type distribution and degree distribution of standardized entities, and to perform the association rule mining. The results of these methods and analyses provide an in-depth understanding and exploration of historical accident risk factors.

    参考文献
    相似文献
    引证文献
引用本文

王占中,张书源,杨萌,兰若冰,吴智豪.交通事故致因知识图谱构建及风险因素挖掘[J].同济大学学报(自然科学版),2025,53(4):611~618

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-30
  • 出版日期:
文章二维码