基于折纸-摩擦纳米发电的路面抗滑性能自驱动感知
CSTR:
作者:
作者单位:

1.广州航海学院 智能交通与工程学院,广东 广州510725;2.同济大学 道路与交通工程教育部重点实验室, 上海 201804

作者简介:

庞亚凤,讲师,工学博士,主要研究方向为道路工程自感知。 E-mail: pangyafeng@gzmtu.edu.cn

通讯作者:

朱兴一,教授,博士生导师,工学博士,主要研究方向为智能化功能性路面。 E-mail:zhuxingyi66@tongji.edu.cn

中图分类号:

U416.217

基金项目:

国家重点研发项目(2023YFE0202400)、上海市科学技术委员会国际合作项目(22210710700)


Self-Powered Pavement Skid-Resistance Sensing Based on Origami-Inspired Triboelectric Nanogenerator
Author:
Affiliation:

1.School of Intelligent Transportation and Engineering, Guangzhou Maritime University, Guangzhou 510725, China;2.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确评估路面抗滑性能对改善行车安全、减少交通事故具有重要意义。当前的测试方法在复杂路况下无法迅速判断安全车速及跟车距离,容易引发交通事故。将摩擦纳米发电与折纸技术结合,基于吉村折纸构型开发摩擦纳米发电机 (YO-TENG),将其植入到轮胎内表面,构建YO-TENG支持的智能轮胎。基于全新搭建的室内智能轮胎测试平台评估多因素下(摩擦系数、车速)YO-TENG对路面抗滑性能实时感知的准确性。结果表明:YO-TENG的短路电流峰值与路面摩擦系数拟合系数达96.36 %。即使引入实际车速的影响,相关系数仍达90.64 %。该研究对路面抗滑性能的自驱动感知提供了理论指导。

    Abstract:

    The study of pavement skid resistance is of great significance for improving driving safety and reducing traffic accidents. However, existing vision-based onboard units cannot quickly determine safe speed and following distance in complex road conditions, contributing to traffic accidents. To address this challenge, this paper integrates the triboelectric nanogenerator (TENG) with origami design principles, leading to the development of a Yoshimura origami-inspired triboelectric nanogenerator (YO-TENG). This YO-TENG is mounted onto the surface of vehicle tires, forming a YO-TENG smart tire system. Moreover, the accuracy of YO-TENG in real-time monitoring of pavement skid resistance under different conditions, specifically friction coefficient and vehicle speed, was evaluated using the newly built indoor intelligent tire testing platform. The results show that the fitting degree between the short-circuit current peak value of YO-TENG and the road friction coefficient is as high as approximately 96.36 %. Even when the influence of actual vehicle speed is considered, the correlation coefficient still reaches 90.64 %. This paper provides valuable theoretical guidance for the development of self-powered, real-time sensing systems for pavement skid resistance monitoring.

    参考文献
    相似文献
    引证文献
引用本文

庞亚凤,刘帅年,朱兴一.基于折纸-摩擦纳米发电的路面抗滑性能自驱动感知[J].同济大学学报(自然科学版),2025,53(5):723~731

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-27
  • 出版日期:
文章二维码