山区高速公路自动驾驶车道检测失效分析
CSTR:
作者:
作者单位:

1.同济大学 道路与交通工程教育部重点试验室,上海 201804;2.江南造船(集团)有限责任公司,上海 201913

作者简介:

陈志贵,工学博士,主要研究方向为交通安全。E-mail: zgchen@tongji.edu.cn

通讯作者:

王雪松,教授,博士生导师,工学博士,主要研究方向为交通安全。E-mail: wangxs@tongji.edu.cn

中图分类号:

U491.2

基金项目:

国家自然科学基金面上项目(52372335)


Reliability Analysis of Autonomous Driving Lane Detection on Mountainous Freeways
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Shanghai 201804, China;2.Jiangnan Shipyard (Group) Co., Ltd., Shanghai 201913, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    自动驾驶车辆在山区高速公路行驶时需要感知不断变化的道路线形、路段特征以及环境等因素,并解析安全行驶边界。针对山区高速公路,测试了基于激光雷达的感知性能,分析了车道线感知失效的影响因素。研究采用同济大学车载全息信息采集系统,实车测试路段为贵州省贵都高速公路,全程多次往返测试累计3 200 km。基于CatBoost模型和沙普利加和解释(SHAP)方法解释了11个特征变量对感知失效的影响。研究结果表明,存在以下特征时会检测出更高概率的感知失效,例如下游曲率最大值越大、坡度变化率越大、出口和入口路段、路面有纵向和横向减速标线等地面标线、天气不良、自车行驶速度越大等。该研究的结果不仅可以为山区高速公路提供更适合自动驾驶安全运营的措施,更好地适应自动驾驶车辆,而且还能为制定自动驾驶的运行设计域提供参考。

    Abstract:

    Autonomous vehicles need to perceive constantly changing road alignments, section characteristics, and environmental factors when driving on mountainous freeways, and analyze safe driving boundaries. This paper focuses on testing the lane detection performance of autonomous vehicles based on LiDAR in mountainous freeway environments and analyzes the influencing factors of lane perception failure. Using the Road and Traffic Holographic Data Acquisition System of Tongji University, the on-road vehicle test was conducted on the Guidu freeway in Guizhou Province, with multiple round trips totaling 3 200 kilometers. The impact of 11 feature variables on perceived failure was explained based on the CatBoost model and Shapley Additive exPlanations (SHAP). The research results indicate that weather factors have the most significant impact on the perception failure of lane markings, followed by the influence of road alignments. Specifically, a higher probability of perceptual failure will be detected when there are the following characteristics: larger maximum curvature, larger grade change rate, exit, and entrance sections, longitudinal deceleration markings, lateral deceleration markings, higher driving speed, etc. The results of this paper can not only provide measures more suitable for the safe operation of autonomous driving on mountainous highways, adapting better to autonomous vehicles, but can also serve as a reference for establishing the operational design domain for autonomous driving.

    参考文献
    相似文献
    引证文献
引用本文

陈志贵,王雪松,孙雨宸.山区高速公路自动驾驶车道检测失效分析[J].同济大学学报(自然科学版),2025,53(10):1553~1563

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-10
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码