en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
中华人民共和国住房和城乡建设部. CJJ 166-2011 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. CJJ 166-2011 Code for seismic design of urban bridges[S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
参考文献 2
中华人民共和国交通运输部. JTG/T B02-01-2008 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008
Ministry of Transport of the People’s Republic of China. JTG/T B02-01-2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008.(in Chinese)
参考文献 3
ChangK C, MoY L, ChenC C, et al. Lessons Learned from the Damaged Chi-Lu Cable-Stayed Bridge[J]. Journal of Bridge Engineering, 2004, 9(4):343-352.
参考文献 4
NaderM, Lopez-JaraJ, MibelliC. Seismic design strategy of the new san francisco-oakland bay bridge self-anchored suspension span[C].Third National Seismic Conference and Workshop on Bridges and Highways: Advances in Engineering and Technology for the Seismic Safety of Bridges in the New Millennium, 2002.
参考文献 5
ArzoumanidisS, ShamaA A, MarlowS J, et al. The New Tacoma Narrows Suspension Bridge: Critical Issues in Seismic Analysis and Design[C]. Structures Congress. 2005:1-12.
参考文献 6
CombaultJ, TeyssandierJ P. The Rion-Antirion Bridge: Concept, Design and Construction[C].Structures Congress 2005@sMetropolis and Beyond. ASCE, 2005:1-12.
参考文献 7
XuY, ZengS, DuanX, et al. Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge[J]. Frontiers of Structural & Civil Engineering, 2018:1-11.
参考文献 8
徐艳, 段昕智, 李建中. 强震作用下斜拉桥纵桥向非线性地震反应分析,华南理工大学学报( 自然科学版),2012.40(6):132-138.
XuYan, DuanXin-zhi, LiJian-zhong. Analysis of Nonlinear Seismic Response of Cable-Stayed Bridge Subjected to Longitudinal Strong Ground Motions[J]. Journal of South China University of Technology ( Natural Science Edition), 2012.40(6):132-138.(in Chinese)
参考文献 9
XuYan, DuanXin-zhi Li, Jian-zhong, Seismic design strategy of cable stayed bridges subjected to strong ground motions[J] .Structural Engineering and Mechanics, Vol. 51, No. 6 (2014) 909-922.
参考文献 10
WangRuilong, XuYan, LiJianzhong , Transverse Seismic Behavior Studies of a Typical Medium Span Cable-Stayed Bridge Model with Two Concrete Towers[J]. Journal of Earthquake Engineering, 2017,21(1)151-168.
参考文献 11
嵇冬冰. 混凝土斜拉横桥向振动台试验研究[D].同济大学,2014
JIDong-bing. Experimental study on seismic performance of concrete cable stayed bridge subcted to lateral ground motions [D]. Tongji University, 2014. (in Chinese)
参考文献 12
曾诗杰. 考虑有限延性的H型混凝土斜拉桥桥塔横桥向抗震性能研究[D].同济大学,2017.
ZENGShi-jie. Study on seismic performance of the H-shaped cable-stayed bridge tower considering limited ductility [D]. Tongji University, 2017. (in Chinese)
参考文献 13
叶爱君, 周连绪, 陈光, et al. 大跨度斜拉桥倒Y形混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018,54(9):66-74.
YEAijun, ZHOULianxu. Chen Guang,et al. Lateral quasi-static test of Inverted Y-shaped Concrete Tower for Long Span Cable-stayed Bridges[J]. China Civil Engineering Journal, 2018,54(9):66-74. (in Chinese)
参考文献 14
焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 同济大学, 2008.
JIAOChi-yu. Seismic vulnerability analysis of long-span cable-stayed bridge based on performance [D]. Tongji University, 2008. (in Chinese)
参考文献 15
张国军, 吕西林, 白国良. 周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J]. 地震工程与工程振动, 2005, 25(6):70-75.
ZHANGGuo-jun, LUXi-lin, BAIGuo-liang. Experimental study on seismic behavior of frame columns with high axial load ratio subjected to low cyclic loads [J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6):70-75.(in Chinese)
参考文献 16
NZS 4203,Code of Practice for General Structural Design and Design Loadings for Buildings[S].1992.
参考文献 17
Eurocode 8.Design provisions for earthquake resistance of structures[S]. London: European Committee for Standardization,1994.
参考文献 18
Washington Department of Transportation, “Design Criteria for the New Tacoma Narrows Bridge”, 2002.
参考文献 19
中华人民共和国住房和城乡建设部. 建筑抗震设计规范[S]. 中国建筑工业出版社, 2010.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings[S]. China Architecture & Building Press, 2010.(in Chinese)
目录 contents

    摘要

    由于塔梁之间的横向约束,在强地震动作用下斜拉桥的桥塔将产生较大的横向动力响应,为了满足规范规定的抗震性能目标须采用较大的桥塔配筋率。同时桥塔基于弹性设计的思路,还会导致下部结构的工程量增加,其工程经济性值得商榷。本文首先采用IDA方法研究斜拉桥桥塔横桥向塑性变形分布规律和破坏模式,然后通过有限元分析和拟静力试验相结合的手段对H型混凝土桥塔横向破坏机理进行验证,同时确定出所要达到的性能目标并得到与之对应的可以量化的性能指标,为斜拉桥的有限延性抗震设计提供理论和试验基础。

    Abstract

    Large transverse dynamic responses will occur in the tower columns due to the lateral restriction between tower and main girder of cable stayed bridge subjected to strong ground motions. In the current seismic design of cable-stayed bridge, a larger reinforcement ratio in tower columns is consequently needed to achieve the target seismic performance, leading to the increase in the number of the piles and its reinforcement ratio as well, its engineering efficiency is therefore questionable. Incremental Dynamic Analysis(IDA) was conducted to study the lateral elastic-plastic perform and damage mechanism of H- shaped concrete tower. Finite element analysis and quasi-static test were conducted to verify the IDA result and investigate the limited ductility of the tower in resisting the earthquake and to find out the reasonable performance objective and index.

    我国桥梁抗震设计规[1,2]要求斜拉桥桥塔在偶遇地震作用下基本保持弹性,而近些年的研究和震害都表明斜拉桥桥塔在强震下存在进入塑性的可能,如1999年即将竣工的集鹿大桥桥塔在集集地震中的破[3]。针对强震作用下的斜拉桥抗震设计,国外学者已提出在保证抗震安全的前提下,允许桥塔在偶遇地震作用下进入塑性,即利用桥塔的塑性能力进行抗震设[4]。美国的Tacoma大[5]和希腊的Rion-antirion大[6]都允许桥塔在第二设防水准下出现塑性区域,在利用桥塔的有限延性方面进行了有益的尝试。

    近年来,国内也展开了对混凝土斜拉桥桥塔的非弹性地震反应研究:徐艳[7]对一座典型的混凝土斜拉桥桥塔进行了1/20缩尺比的振动台试验研究,结果表明桥塔的纵桥向具有较高的抗震安全储备,但在强震作用下塔底混凝土依然会开裂,出现裂缝贯通和钢筋裸露的现象;于是徐艳[8]引入能考虑塑性发展的非线性弹塑性单元,研究纵桥向强震作用下桥梁各主要构件的塑性发展状况及其对全桥地震反应的影响.表明桥塔屈服将显著减小塔柱下部结构的地震需求.徐艳[9]进一步比较和探讨了斜拉桥桥塔采用常规减隔震设计和非弹性设计的利弊,并对我国典型混凝土桥塔斜拉桥提出了“桥塔有限延性”的抗震设计思想。王瑞龙和嵇冬冰[10,11]首次以一座典型的中等跨度H型桥塔斜拉桥为对象进行了大比例尺(1/20)全桥振动台试验,研究混凝土斜拉桥桥塔在横向地震动作用下的塑性发展过程和破坏行为,试验设计时通过适当降低上横梁配筋率将其作为预设的塑性铰区域,试验结果表明可以通过上横梁的屈服耗能来保证桥塔其他构件基本弹性。曾诗杰[12]以王瑞[10]全桥模型为基础,将“强柱弱梁”的配筋方案改为“强梁弱柱”,通过进行同比例尺全桥模型振动台试验,对其在横桥向地震动作用下易损截面和破坏模式进行了研究,试验结果表明在“强梁弱柱”的配筋方案下,桥塔的塑性区域及破坏模式均发生了改变,塔柱与下横梁交界的两截面(下塔柱顶部和上塔柱底部)是最易损截面。叶爱君[13]为研究大跨度斜拉桥倒Y型混凝土主塔横向破坏机理和弹塑性性能,进行了比例尺为1/35的单桥塔模型拟静力试验,结果说明倒Y型桥塔屈服后具有一定的延性能力,最终破坏发生在塔底截面。

    由此可见,已有的研究成果虽然针对不同的桥塔形状或不同的配筋设计表现出不同的屈服顺序及易损截面,但都表明了混凝土斜拉桥桥塔在强震作用下具有一定的延性能力,只是尚未确定出可供参考的性能目标及性能指标。为了合理地利用H型混凝土桥塔的塑性耗能能力来减小斜拉桥在横向地震输入下的抗震需求,为斜拉桥的有限延性抗震设计提供理论和试验基础,本文通过有限元分析和拟静力试验相结合的手段对H型混凝土桥塔横桥向屈服后的非线性行为进行研究,初步确定所要达到的性能目标并得到与之对应的性能指标。

  • 1 动力增量分析

  • 1.1 工程背景

    以我国已经建成的某典型中等跨径双塔双索面H型混凝土桥塔斜拉桥为工程原型。该桥主跨采用钢箱梁,边跨采用预应力混凝土箱梁。全桥长640m,跨径布置为60m+70m+380m+70m+60m=640m。其中两辅助墩之间主梁为钢箱梁(长520m),两侧混凝土梁分别长60m,如图1所示,桥宽35.5m,4×12条斜拉索呈扇形布置。斜拉桥桥塔为H型桥塔,塔高91.4m,桥塔构造见图2

    Fig.1 The bridge elevation of the cable-stayed bridge

    注:图1斜拉桥总体布置图 (单位:cm)

    Fig.2 The main tower of the cable-stayed bridge

    注:图2桥塔一般构造图 (单位:cm)

    基于OpenSEES平台,建立考虑桥塔弹塑性的精细化非线性有限元全桥模型,其中主塔底部、塔梁交接处(即主塔下塔柱顶部,上塔柱底部)、主塔上塔柱顶部、下横梁以及上横梁均采用纤维截面的梁柱单元建模。

  • 1.2 地震动输入

    以原斜拉桥桥址的场地安评报告中提供的50年超越概率5%(E2地震)的设计反应谱为基准,从美国太平洋地震工程研究中心的数据库中选取200条地震动记录,并应用Seismomatch软件在反应谱(T=0-2s)范围内以保证所选地震波在平台段的加速度反应谱值平均值与设计反应谱值基本相等(Saave(T0-2s)=Sadesign(T0-2s))为目标进行筛选,最终确定出来的8条地震波与设计反应谱的对比如图3所示。将平台段的加速度反应谱值平均值作为IDA分析中的调幅对象,即:地震动强度等级(ground motion intensity measure,IM),如表1所示。

    图3
                            设计反应谱与8条地震动反应谱对比

    图3 设计反应谱与8条地震动反应谱对比

    Fig.3 The comparison of design response spectrum and 8 earthquake response spectrums

    表1 地震强度等级IM

    Table1 Ground motion intensity measure

    地震强度等级IMSaave(T0-2s)/g平均PGA(调幅后)/g地震动强度等级IMSaave(T0-2s)/g平均PGA(调幅后)/g
    10.2710.10971.8970.763
    20.5420.21882.1680.872
    30.8130.32792.4390.981
    41.0840.436102.711.090
    51.3550.545112.9811.199
    61.6260.654123.2521.308
  • 1.3 H型混凝土桥塔横向破坏全过程

    本文将基于IDA方法,通过不断提高地震动强度等级,研究H型混凝土桥塔从弹性阶段至塑性阶段直至最终破坏的全过程。

  • 1.3.1 屈服和破坏阶段塔身曲率分布

    H型混凝土桥塔在地震动作用下会在塔柱中产生不可忽视的动轴力,而截面曲率的计算与截面轴力密切相关,这也就意味着截面曲率在地震过程中始终处于一个动态的变化过程中,文[14]指出动轴力对于截面的首次屈服曲率影响较小,对截面破坏阶段的破坏曲率影响较大,故本文以塔身各截面在恒载轴力下的首次屈服曲率作为判别截面进入屈服阶段的标准,以核心混凝土外侧混凝土达到极限压应变作为判断截面进入破坏阶段的标准,其对应的曲率为破坏曲率。H型混凝土桥塔处于屈服和破坏状态时沿塔身的曲率分布分别如图4图5所示。

    图4
                            屈服阶段塔身曲率分布

    图4 屈服阶段塔身曲率分布

    Fig.4 curvature of plastic stage

    图5
                            破坏阶段塔身曲率分布

    图5 破坏阶段塔身曲率分布

    Fig.5 curvature of damage stage

    图4中H型混凝土桥塔进入塑性阶段所对应的地震强度等级为3,此时塔底截面首先屈服。图5中H型混凝土桥塔进行破坏阶段所对应的地震强度等级为12,此时上塔柱的底部率先破坏。

  • 1.3.2 关键截面钢筋和混凝土最大应变分布

    由H型混凝土桥塔的屈服和破坏阶段时的沿塔身的曲率分布可以看出其最不利截面为:塔底截面,下塔柱顶部截面和上塔柱底部截面。主塔屈服由塔底截面控制,而主塔破坏则由上塔柱底部截面控制。图6给出了此三个关键截面在地震动作用下材料最大应变随着地震动强度等级IM的变化关系。

    图6
                            最不利截面材料最大应变随地震强度等级IM变化规律

    图6 最不利截面材料最大应变随地震强度等级IM变化规律

    Fig.6 The max strain of materials of the key sections under different IM

    由图可知,核心混凝土外侧的钢筋达到屈服拉应变控制着塔底截面的屈服,随后上塔柱底部截面的核心混凝土外侧的钢筋也达到屈服拉应变,接着下塔柱顶部截面的核心混凝土外侧钢筋达到屈服拉应变,而核心混凝土外侧混凝土达到极限压应变控制着各个截面的破坏,H型混凝土桥塔的破坏由上塔柱的底部截面控制。

  • 1.4 关键截面延性能力

    钢筋混凝土延性构件的非弹性变形能力来自塑性铰区的塑性转动能力。因此,可采用截面的曲率来反映。

    曲率延性系数的定义为:

    μϕ=ϕuϕy
    (1.1)

    其中: ϕy=MiM'iϕ'y (1.2)

    式中,ϕ'y为截面最外层受拉钢筋初始屈服时的曲率;M'i为截面最外层受拉钢筋初始屈服弯矩;理论屈服弯矩Mi则根据实际的和理论的(双线性) M-ϕ曲线在ϕ'y-ϕu之间包围的面积相等的原则确定;其中ϕu为混凝土构件塑性铰区截面的极限曲率。

    H型混凝土桥塔在地震动作用下会在塔柱中产生较大的动轴力,截面的屈服曲率与动轴力峰值并不是同一时刻达到的,当截面达到屈服曲率时的动轴力并不是最大值,为了分析的简便,本文将峰值动轴力作为定值来对截面进行能力分析,文[15]指出随着轴压比的增大, 试件的延性逐步减小,故使用峰值动轴力计算得到的曲率延性系数会偏小,计算结果偏于保守和安全,即采用高估了的动轴力状态,对桥塔各个不利截面进行截面分析,可得到各截面的偏于保守的曲率延性能力,如图7所示。

    图7
                            桥塔关键截面的延性能力

    图7 桥塔关键截面的延性能力

    Fig.7 The ductility of key sections

    由上图可知桥塔动轴力随着地震强度等级的不断增加而增加,桥塔各个截面的位移延性系数不断降低,随着地震强度等级的提高,动轴力对截面的曲率延性几乎起到决定性作用:随着动轴力的增加,试件的延性逐步减小。由前文分析可知,塔底截面在地震强度等级IM=3时进入塑性阶段,此时对应的曲率延性系数为21.8,下塔柱顶部截面在地震强度等级IM=5时进入塑性阶段,此时对应的曲率延性系数为17.7;上塔柱底部截面在地震强度等级IM=4时进入塑性阶段,此时对应的曲率延性系数为23.5。新西兰规[16]中要求,对采用有限延性结构设计的桥梁,曲率延性系数至少取 10;欧洲规[17]规定其为15,故H型混凝土桥塔利用有限延性能力进行抗震设计的思路是可行的。

  • 2 H型混凝土桥塔横桥向拟静力试验

  • 2.1 拟静力试验方案

    考虑到试验条件的限制,本模型决定采用与原型相似比为1/20,混凝土采用微粒混凝土进行模拟。在本试验选定的配合比下弹性模量相似常数SE=Sσ=0.3,受力主筋和箍筋分别采用φ6钢筋和10#钢丝,其他物理量的相似常数可由量纲分析法得出。

    H型混凝土桥塔模型拟静力试验为单向加载,拟静力试验加载布置如图8所示,塔顶竖向荷载恒定并由2个随动作动器施加,单个竖向加载力为3.45t;下横梁处的竖向力通过张拉预应力的方式来实现,张拉力为5.1t。水平单向荷载由加载吨位为50t、100t,位移行程均为±0.5m的作动器施加,数据采集频率取5Hz。

    Fig.8 Arrangement diagram of quasi-static test

    注:图8拟静力试验单向加载布置图

    由于拟静力试验无法按照沿塔身的惯性力分布的荷载模式进行加载,而且考虑到当结构进入屈服以后,施加给实际结构的集中力的增加并不明显,即结构响应并不敏感,所以本文采用H型混凝土桥塔上下横梁处的两点位移加载模式。两点位移加载模式相比原结构的受力有很大的简化,为确保其产生等效的力学行为,简化过程如下:首先通过全桥有限元分析计算得到等效的横桥向单塔模型,其次通过对单塔模型进行不同地震强度等级下的IDA分析,得到不同地震强度等级下的惯性力分布模式,然后对单塔模型进行推倒分析,得到当控制节点达到目标位移时的不同地震强度等级下的上、下横梁位移之比。将此上、下横梁位移比作为两点位移加载模式进行拟静力试验。图9给出了全桥模型和单塔模型在IM=10时(此时结构已进入塑性阶段)的动力反应时程对比,以验证全桥模型等效为单塔模型的正确性。

    html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F010.jpg

    a. 位移

    html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F011.jpg

    b. 剪力

    html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F012.jpg

    c. 轴力

    html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F013.jpg

    d. 弯矩

    图9 全桥及单塔模型地震响应对比

    Fig.9 The dynamic response of cable-stayed bridge and equivalent tower

    最终确定的加载方式为:上横梁处开始以幅值3mm加载至24mm,上下横梁位移加载比为3:1;然后采用幅值1mm加载至36 mm,上下横梁位移加载比为1:2;随后采用幅值2mm加载至46 mm,上下横梁位移加载比为2:1;然后采用幅值5mm加载至111 mm,上下横梁位移加载比为5:1。试验现场图如图10所示。

    图10
                            试验现场图

    图10 试验现场图

    Fig.10 Quasi-static test

  • 2.2 试验结果分析

  • 2.2.1 试验破坏过程描述

    试验过程中,当上横梁的位移施加到15mm时,塔底附近出现裂缝,随着位移的增加,塔底区域裂缝数目扩张;当上横梁的位移施加到21mm时,上塔柱底部附近出现裂缝,随着试验的继续,该区域的裂缝数目扩张;当上横梁位移增加到32mm时,下塔柱顶部出现裂缝,随着位移的增加,该区域裂缝和宽度逐步发展。裂缝的发展过程趋势与数值模型的结果基本一致。当上塔顶位移施加到91mm时,上塔柱底部区域保护层混凝土率先压溃,混凝土剥落,钢筋外露,但塔底截面只是发生裂缝的扩张,保护层混凝土并没有剥落。图11给出了关键时刻模型的裂缝发展和损伤状态。

    html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image014.png

    a. 塔底水平裂缝(15mm)

    html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image015.png

    b. 上塔柱底部水平裂缝21mm

    html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image016.png

    c. 塔底裂缝扩张

    html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image017.png

    d. 上塔柱底部区域保护层压溃(91mm)

    注:图11试件裂缝发展和损伤状态

    Fig.11 Development of crack and damage stage

    由H型混凝土斜拉桥桥塔的拟静力试验的现象分析可知:拟静力试验中随着横向位移的递增,塔底截面率先出现裂缝,裂缝向上蔓延,接着上塔柱底部出现裂缝,裂缝向上延伸,然后下塔柱顶部区域出现裂缝,裂缝向下延性,即拟静力试验裂缝的发展趋势为塔底→上塔柱底部区域→下塔柱顶部区域;从桥塔破坏状态来看,单塔拟静力试验的破坏由上塔柱底部区域控制,这与有限元的分析结果一致,说明该单塔的加载模式可以在总体上反应桥塔在全桥中的受力行为。

  • 2.2.2 试验现象分析及数值模拟

    用弹塑性纤维单元建立H型混凝土桥塔单塔试件的数值模型,按照与拟静力试验相同的加载方案进行推倒分析,将所得到的数值结果与拟静力试验结果进行对比分析以确定数值模型的正确性并借助于数值分析的手段进行更深入的研究,弥补试验手段的不足。

    拟静力试验单塔试件的屈服是由塔底截面核心混凝土外侧受拉钢筋屈服控制的,通过试验数据可以发现当上横梁位移达到35mm时,塔底截面核心混凝土外侧受拉钢筋首次屈服,标志着此时H型混凝土桥塔试件进入了屈服状态,当结构进入屈服状态后,由于钢筋屈服致使应变片温度较高或者脱落,导致试验后期部分应变片数据失效,故下图12给出了H型混凝土桥塔在屈服之前塔身关键区域受拉钢筋最大应变的有限元数值结果与试验结果的比较,两者在上塔柱底部和塔底的误差大部分在10%以内,个别不超过20%,而下塔柱顶部误差较大,但并不影响对屈服状态的判断,可以从中大致观测到塔身关键区域钢筋随着横向位移递增的屈服路径。

    Fig.12 The max strain of steels

    注:图12塔身钢筋最大应变分布

    图12的塔身钢筋最大应变变化趋势可以看出:塔身各个关键区域的钢筋最大拉应变随着桥塔横向位移的增加而增加,其中塔底截面附近以及上塔柱底部截面附近的钢筋最大应变增幅尤其明显,这意味着塔底截面和上塔柱底部截面将率先进入屈服状态。在整个横向位移加载过程中截面核心混凝土外侧钢筋的屈服路径应该为:塔底附近截面核心混凝土外侧钢筋率先屈服,然后上塔柱底部截面核心混凝土外侧钢筋屈服,最后下塔柱顶部截面核心混凝土外侧钢筋屈服。

  • 3 性能目标及性能指标的确定

    斜拉桥的H型主塔属柔性结构,一般以弯曲变形为主,因而可采用关键截面的曲率作为截面的损伤指标。本文以WSDOT(Washington Department of Transportation[18]针对Tecoma 悬索桥塔柱结构的材料应变状态的定义为基础,参考同类文献的应变损伤状态的确定方法,定义了基于材料应变状态的截面损伤指标表3所示,根据该材料应变指标可以求出关键截面对应不同损伤状态的曲率阀值。

    表3 损伤状态

    Table3 Damage stage

    损伤状态材料应变描述
    无损伤最外侧纵向钢筋应变小于名义屈服应变
    轻微损伤纵向钢筋应变小于初始强化应变且非约束混凝土应变小于0.004
    中等损伤(可修复损伤)纵向钢筋应变小于0.55倍极限拉应变,约束混凝土小于0.75倍极限压应变
    严重损伤(倒塌控制损伤)纵向钢筋应变小于极限拉应变,约束混凝土小于极限压应变
    完全损伤纵向钢筋应变大于极限拉应变,约束混凝土超过极限压应变

    在IDA分析中,H型混凝土桥塔的三个关键截面在不同地震强度水平下的曲率需求以及曲率损伤指标如下图13~图15所示,可以从中看出桥塔关键截面在不同地震强度水平下所处的损伤状态。

    图13
                            塔底截面包络曲率IDA曲线

    图13 塔底截面包络曲率IDA曲线

    Fig.13 IDA curve of tower bottom section

    图15
                            上塔柱底部截面包络曲率IDA曲线

    图15 上塔柱底部截面包络曲率IDA曲线

    Fig.15 IDA curve of bottom section of upper column

    图14
                            下塔柱顶部包络曲率IDA曲线

    图14 下塔柱顶部包络曲率IDA曲线

    Fig.14 IDA curve of top section of lower column

    从上图可以看出,在地震强度水平调幅范围内,上塔柱底部截面已进入完全损伤状态,而塔底和下塔柱顶部处于可修复损伤状态。随着地震强度等级的提高,塔底截面率先进入轻微损伤状态,随后上塔柱底部截面和下塔柱顶部截面依次进入轻微损伤状态;上塔柱底部截面率先进入中等损伤状态,接着塔底截面和下塔柱顶部截面依次进入中等损伤状态;最后上塔柱底部率先进入严重损伤和完全损伤状态,但塔底截面和下塔柱顶部截面仍停留在可修复损伤状态。

    结合基于材料应变状态的截面损伤指标,下图16给出了拟静力试验及有限元数值模拟过程中塔身曲率随着上横梁横向位移增加时塔身损伤状态的变化对比。

    图16
                            塔身各截面损伤状态的变化过程

    图16 塔身各截面损伤状态的变化过程

    Fig.16 The change of damage stage

    由上图可知,有限元数值模拟以及试验过程中的关键区域截面的曲率的变化趋势整体基本一致,都随着上横梁横向位移增加而增加。其中上塔柱底部和塔底大部分误差在10%~30%左右,下塔柱顶部误差相对较大,但不影响对损伤状态的判断。从数值模拟的结果可以看出,当位移达到51cm时,模型的三个关键截面都已进入轻微损伤状态,分析塔身曲率变化趋势可以推断塔底截面率先进入轻微损伤状态;当位移达到91mm时,上塔柱底部已率先进入严重损伤状态。在拟静力试验过程中,由现场观测到的现象可知当位移达到21mm时,塔底截面出现裂缝;当位移达到91mm时,上塔柱底部截面出现保护层混凝土压溃的现象,而保护层剥落恰好正是进入可修复损伤状态的特征之一,这时的塔底截面和上塔柱顶部区域出现了裂缝的延伸和扩张,但是没有出现保护层混凝土剥落的现象;当位移达到111mm时,上塔柱底部截面区域保护层混凝土破坏程度加剧,但塔底和下塔柱顶部截面仍然只是出现裂缝的扩张,钢筋并未露出。

    在工程实际中要利用H型混凝土桥塔的有限延性,则需要确保桥塔进入塑性阶段且仅承受可修复的损伤,避免发生严重损伤和完全损伤,由上述分析可知,上塔柱底部截面控制着桥塔的可修复损伤状态。由于H型混凝土桥塔从结构形式上而言类似于两层框架,因此本文尝试从层间位移角的角度去控制桥塔损伤,《建筑抗震设计规范》(GB50011-2010[19]中对钢筋混凝土框架设定的弹塑性层间位移角限值为1/50,根据用实桥桥塔的上下塔柱段可换算得到下横梁相对塔底的相对位移限值和上横梁相对下横梁的相对位移限制。此外,通过原桥IDA分析、模型拟静力试验和有限元模拟也可得到当上塔柱底部截面发生可修复性损伤时,利用相似比换算得到的实桥桥塔上横梁相对下横梁、下横梁相对塔底的相对位移和层间位移角,如表3所示。

    表3 层间位移角限值

    Table3 Floor displacement angle

    规范IDA方法拟静力试验有限元模拟

    层间位移

    m

    层间位移角

    层间位移

    m

    层间位移角

    层间位移

    m

    层间位移角

    层间位移

    m

    层间位移角
    上塔柱0.9700.020.890.01830.90.01911.1520.0244
    下塔柱0.7620.020.620.01630.920.02560.6680.0186

    偏安全取上述多种分析结果的最小值,据此,本文将可修复损伤作为H型混凝土桥塔的性能目标,将上、下塔柱的层间位移角作为其性能指标,根据原桥IDA分析、模型拟静力试验及有限元数值模拟,并参考文[19]中对钢筋混凝土框架弹塑性层间位移角限值的规定最终可确定出:以可修复性损伤状态作为H型混凝土桥塔的性能目标,其对应的材料层面的要求为纵向钢筋应变小于0.55倍极限拉应变,约束混凝土小于0.75倍极限压应变;结构层面的位移角限值为下横梁相对于地面的层间位移角不超过0.0163,上横梁相对于下横梁的层间位移角不超过0.0183。但值得一提的是,该性能指标的量值目前还不能直接应用到除原桥以外的实际工程,但本文提供的思路和方法完全可以针对特定的斜拉桥进行计算分析,得到定量的性能指标。针对H型混凝土桥塔的斜拉桥,本文的后续研究工作将可以提供考虑不同轴压比和上、下横梁与塔柱相对高度位置变化的通用性能指标。

  • 4 结论

    本文以某跨径为640m的H型桥塔混凝土斜拉桥为原型,通过全桥IDA分析、推倒分析和单塔拟静力试验及数值模拟,对其横桥向地震动作用下的非线性全过程和破坏模式进行了研究,并初步确定出了利用H型混凝土桥塔的有限延性进行抗震设计的性能目标以及指标,主要得出了以下结论:

    1、H型混凝土桥塔的塑性区域发展顺序为:塔底区域→上塔柱底部区域→下塔柱顶部区域→上塔柱顶部区域。主塔屈服由塔底截面控制,而主塔破坏模式则是由上塔柱底部截面控制的弯曲破坏。

    2、采用有限延性抗震设计的H型混凝土斜拉桥桥塔的性能目标可定义为基于材料应变状态得到的可修复性损伤状态;其性能指标可定义为可修复损伤状态对应的上、下横梁间的层间位移角。

    3、应用本文方法可对不同塔型的混凝土斜拉桥进行计算分析,得到定量的性能指标。

  • 参考文献

    • 1

      中华人民共和国住房和城乡建设部. CJJ 166-2011 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011

      Ministry of Housing and Urban-Rural Development of the People’s Republic of China. CJJ 166-2011 Code for seismic design of urban bridges[S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)

    • 2

      中华人民共和国交通运输部. JTG/T B02-01-2008 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008

      Ministry of Transport of the People’s Republic of China. JTG/T B02-01-2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008.(in Chinese)

    • 3

      Chang K C, Mo Y L, Chen C C, et al. Lessons Learned from the Damaged Chi-Lu Cable-Stayed Bridge[J]. Journal of Bridge Engineering, 2004, 9(4):343-352.

    • 4

      Nader M, Lopez-Jara J, Mibelli C. Seismic design strategy of the new san francisco-oakland bay bridge self-anchored suspension span[C].Third National Seismic Conference and Workshop on Bridges and Highways: Advances in Engineering and Technology for the Seismic Safety of Bridges in the New Millennium, 2002.

    • 5

      Arzoumanidis S, Shama A A, Marlow S J, et al. The New Tacoma Narrows Suspension Bridge: Critical Issues in Seismic Analysis and Design[C]. Structures Congress. 2005:1-12.

    • 6

      Combault J, Teyssandier J P. The Rion-Antirion Bridge: Concept, Design and Construction[C].Structures Congress 2005@sMetropolis and Beyond. ASCE, 2005:1-12.

    • 7

      Xu Y, Zeng S, Duan X, et al. Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge[J]. Frontiers of Structural & Civil Engineering, 2018:1-11.

    • 8

      徐艳, 段昕智, 李建中. 强震作用下斜拉桥纵桥向非线性地震反应分析,华南理工大学学报( 自然科学版),2012.40(6):132-138.

      Xu Yan, Duan Xin-zhi, Li Jian-zhong. Analysis of Nonlinear Seismic Response of Cable-Stayed Bridge Subjected to Longitudinal Strong Ground Motions[J]. Journal of South China University of Technology ( Natural Science Edition), 2012.40(6):132-138.(in Chinese)

    • 9

      Xu Yan, Duan Xin-zhi Li, Jian-zhong, Seismic design strategy of cable stayed bridges subjected to strong ground motions[J] .Structural Engineering and Mechanics, Vol. 51, No. 6 (2014) 909-922.

    • 10

      Wang Ruilong, Xu Yan, Li Jianzhong , Transverse Seismic Behavior Studies of a Typical Medium Span Cable-Stayed Bridge Model with Two Concrete Towers[J]. Journal of Earthquake Engineering, 2017,21(1)151-168.

    • 11

      嵇冬冰. 混凝土斜拉横桥向振动台试验研究[D].同济大学,2014

      JI Dong-bing. Experimental study on seismic performance of concrete cable stayed bridge subcted to lateral ground motions [D]. Tongji University, 2014. (in Chinese)

    • 12

      曾诗杰. 考虑有限延性的H型混凝土斜拉桥桥塔横桥向抗震性能研究[D].同济大学,2017.

      ZENG Shi-jie. Study on seismic performance of the H-shaped cable-stayed bridge tower considering limited ductility [D]. Tongji University, 2017. (in Chinese)

    • 13

      叶爱君, 周连绪, 陈光, et al. 大跨度斜拉桥倒Y形混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018,54(9):66-74.

      YE Aijun, ZHOU Lianxu. Chen Guang,et al. Lateral quasi-static test of Inverted Y-shaped Concrete Tower for Long Span Cable-stayed Bridges[J]. China Civil Engineering Journal, 2018,54(9):66-74. (in Chinese)

    • 14

      焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 同济大学, 2008.

      JIAO Chi-yu. Seismic vulnerability analysis of long-span cable-stayed bridge based on performance [D]. Tongji University, 2008. (in Chinese)

    • 15

      张国军, 吕西林, 白国良. 周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J]. 地震工程与工程振动, 2005, 25(6):70-75.

      ZHANG Guo-jun, LU Xi-lin, BAI Guo-liang. Experimental study on seismic behavior of frame columns with high axial load ratio subjected to low cyclic loads [J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6):70-75.(in Chinese)

    • 16

      NZS 4203,Code of Practice for General Structural Design and Design Loadings for Buildings[S].1992.

    • 17

      Eurocode 8.Design provisions for earthquake resistance of structures[S]. London: European Committee for Standardization,1994.

    • 18

      Washington Department of Transportation, “Design Criteria for the New Tacoma Narrows Bridge”, 2002.

    • 19

      中华人民共和国住房和城乡建设部. 建筑抗震设计规范[S]. 中国建筑工业出版社, 2010.

      Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings[S]. China Architecture & Building Press, 2010.(in Chinese)

徐艳

机 构:同济大学土木工程防灾国家重点实验室,上海200092

Affiliation:State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

角 色:第一作者

角 色:通讯作者

Role:First author

Role:Corresponding author

邮 箱:yanxu@tongji.edu.cn

作者简介:徐艳(1976-),女,浙江人,副研究员,博士,博导,主要从事桥梁抗震研究(E-mail:yanxu@tongji.edu.cn).

童川

机 构:

1. 同济大学土木工程防灾国家重点实验室,上海200092

2. 同济大学建筑设计研究院, 上海200092

Affiliation:

1. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

2. Architectural Design and Research Institute of Tongji University, Shanghai 200092, China

html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F001.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F002.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F003.jpg
地震强度等级IMSaave(T0-2s)/g平均PGA(调幅后)/g地震动强度等级IMSaave(T0-2s)/g平均PGA(调幅后)/g
10.2710.10971.8970.763
20.5420.21882.1680.872
30.8130.32792.4390.981
41.0840.436102.711.090
51.3550.545112.9811.199
61.6260.654123.2521.308
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F004.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F005.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F006.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F007.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F008.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F010.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F011.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F012.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F013.jpg
html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image013.jpeg
html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image014.png
html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image015.png
html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image016.png
html/jtuns/19013/media/548fe29a-3106-45c2-86de-5c8091bd4c00-image017.png
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F020.jpg
损伤状态材料应变描述
无损伤最外侧纵向钢筋应变小于名义屈服应变
轻微损伤纵向钢筋应变小于初始强化应变且非约束混凝土应变小于0.004
中等损伤(可修复损伤)纵向钢筋应变小于0.55倍极限拉应变,约束混凝土小于0.75倍极限压应变
严重损伤(倒塌控制损伤)纵向钢筋应变小于极限拉应变,约束混凝土小于极限压应变
完全损伤纵向钢筋应变大于极限拉应变,约束混凝土超过极限压应变
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F021.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F023.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F022.jpg
html/jtuns/19013/alternativeImage/548fe29a-3106-45c2-86de-5c8091bd4c00-F024.jpg
规范IDA方法拟静力试验有限元模拟

层间位移

m

层间位移角

层间位移

m

层间位移角

层间位移

m

层间位移角

层间位移

m

层间位移角
上塔柱0.9700.020.890.01830.90.01911.1520.0244
下塔柱0.7620.020.620.01630.920.02560.6680.0186

Fig.1 The bridge elevation of the cable-stayed bridge

Fig.2 The main tower of the cable-stayed bridge

图3 设计反应谱与8条地震动反应谱对比

Fig.3 The comparison of design response spectrum and 8 earthquake response spectrums

表1 地震强度等级IM

Table1 Ground motion intensity measure

图4 屈服阶段塔身曲率分布

Fig.4 curvature of plastic stage

图5 破坏阶段塔身曲率分布

Fig.5 curvature of damage stage

图6 最不利截面材料最大应变随地震强度等级IM变化规律

Fig.6 The max strain of materials of the key sections under different IM

图7 桥塔关键截面的延性能力

Fig.7 The ductility of key sections

Fig.8 Arrangement diagram of quasi-static test

图9 全桥及单塔模型地震响应对比 -- a. 位移

Fig.9 The dynamic response of cable-stayed bridge and equivalent tower

图9 全桥及单塔模型地震响应对比 -- b. 剪力

Fig.9 The dynamic response of cable-stayed bridge and equivalent tower

图9 全桥及单塔模型地震响应对比 -- c. 轴力

Fig.9 The dynamic response of cable-stayed bridge and equivalent tower

图9 全桥及单塔模型地震响应对比 -- d. 弯矩

Fig.9 The dynamic response of cable-stayed bridge and equivalent tower

图10 试验现场图

Fig.10 Quasi-static test

-- a. 塔底水平裂缝(15mm)

Fig.11 Development of crack and damage stage

-- b. 上塔柱底部水平裂缝21mm

Fig.11 Development of crack and damage stage

-- c. 塔底裂缝扩张

Fig.11 Development of crack and damage stage

-- d. 上塔柱底部区域保护层压溃(91mm)

Fig.11 Development of crack and damage stage

Fig.12 The max strain of steels

表3 损伤状态

Table3 Damage stage

图13 塔底截面包络曲率IDA曲线

Fig.13 IDA curve of tower bottom section

图15 上塔柱底部截面包络曲率IDA曲线

Fig.15 IDA curve of bottom section of upper column

图14 下塔柱顶部包络曲率IDA曲线

Fig.14 IDA curve of top section of lower column

图16 塔身各截面损伤状态的变化过程

Fig.16 The change of damage stage

表3 层间位移角限值

Table3 Floor displacement angle

image /

图1斜拉桥总体布置图 (单位:cm)

图2桥塔一般构造图 (单位:cm)

无注解

无注解

无注解

无注解

无注解

无注解

图8拟静力试验单向加载布置图

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

图12塔身钢筋最大应变分布

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      中华人民共和国住房和城乡建设部. CJJ 166-2011 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011

      Ministry of Housing and Urban-Rural Development of the People’s Republic of China. CJJ 166-2011 Code for seismic design of urban bridges[S]. Beijing: China Architecture and Building Press, 2011. (in Chinese)

    • 2

      中华人民共和国交通运输部. JTG/T B02-01-2008 公路桥梁抗震设计细则[S]. 北京: 人民交通出版社, 2008

      Ministry of Transport of the People’s Republic of China. JTG/T B02-01-2008 Guidelines for seismic design of highway bridges[S]. Beijing: China Communications Press, 2008.(in Chinese)

    • 3

      Chang K C, Mo Y L, Chen C C, et al. Lessons Learned from the Damaged Chi-Lu Cable-Stayed Bridge[J]. Journal of Bridge Engineering, 2004, 9(4):343-352.

    • 4

      Nader M, Lopez-Jara J, Mibelli C. Seismic design strategy of the new san francisco-oakland bay bridge self-anchored suspension span[C].Third National Seismic Conference and Workshop on Bridges and Highways: Advances in Engineering and Technology for the Seismic Safety of Bridges in the New Millennium, 2002.

    • 5

      Arzoumanidis S, Shama A A, Marlow S J, et al. The New Tacoma Narrows Suspension Bridge: Critical Issues in Seismic Analysis and Design[C]. Structures Congress. 2005:1-12.

    • 6

      Combault J, Teyssandier J P. The Rion-Antirion Bridge: Concept, Design and Construction[C].Structures Congress 2005@sMetropolis and Beyond. ASCE, 2005:1-12.

    • 7

      Xu Y, Zeng S, Duan X, et al. Seismic experimental study on a concrete pylon from a typical medium span cable-stayed bridge[J]. Frontiers of Structural & Civil Engineering, 2018:1-11.

    • 8

      徐艳, 段昕智, 李建中. 强震作用下斜拉桥纵桥向非线性地震反应分析,华南理工大学学报( 自然科学版),2012.40(6):132-138.

      Xu Yan, Duan Xin-zhi, Li Jian-zhong. Analysis of Nonlinear Seismic Response of Cable-Stayed Bridge Subjected to Longitudinal Strong Ground Motions[J]. Journal of South China University of Technology ( Natural Science Edition), 2012.40(6):132-138.(in Chinese)

    • 9

      Xu Yan, Duan Xin-zhi Li, Jian-zhong, Seismic design strategy of cable stayed bridges subjected to strong ground motions[J] .Structural Engineering and Mechanics, Vol. 51, No. 6 (2014) 909-922.

    • 10

      Wang Ruilong, Xu Yan, Li Jianzhong , Transverse Seismic Behavior Studies of a Typical Medium Span Cable-Stayed Bridge Model with Two Concrete Towers[J]. Journal of Earthquake Engineering, 2017,21(1)151-168.

    • 11

      嵇冬冰. 混凝土斜拉横桥向振动台试验研究[D].同济大学,2014

      JI Dong-bing. Experimental study on seismic performance of concrete cable stayed bridge subcted to lateral ground motions [D]. Tongji University, 2014. (in Chinese)

    • 12

      曾诗杰. 考虑有限延性的H型混凝土斜拉桥桥塔横桥向抗震性能研究[D].同济大学,2017.

      ZENG Shi-jie. Study on seismic performance of the H-shaped cable-stayed bridge tower considering limited ductility [D]. Tongji University, 2017. (in Chinese)

    • 13

      叶爱君, 周连绪, 陈光, et al. 大跨度斜拉桥倒Y形混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018,54(9):66-74.

      YE Aijun, ZHOU Lianxu. Chen Guang,et al. Lateral quasi-static test of Inverted Y-shaped Concrete Tower for Long Span Cable-stayed Bridges[J]. China Civil Engineering Journal, 2018,54(9):66-74. (in Chinese)

    • 14

      焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 同济大学, 2008.

      JIAO Chi-yu. Seismic vulnerability analysis of long-span cable-stayed bridge based on performance [D]. Tongji University, 2008. (in Chinese)

    • 15

      张国军, 吕西林, 白国良. 周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J]. 地震工程与工程振动, 2005, 25(6):70-75.

      ZHANG Guo-jun, LU Xi-lin, BAI Guo-liang. Experimental study on seismic behavior of frame columns with high axial load ratio subjected to low cyclic loads [J]. Earthquake Engineering and Engineering Vibration, 2005, 25(6):70-75.(in Chinese)

    • 16

      NZS 4203,Code of Practice for General Structural Design and Design Loadings for Buildings[S].1992.

    • 17

      Eurocode 8.Design provisions for earthquake resistance of structures[S]. London: European Committee for Standardization,1994.

    • 18

      Washington Department of Transportation, “Design Criteria for the New Tacoma Narrows Bridge”, 2002.

    • 19

      中华人民共和国住房和城乡建设部. 建筑抗震设计规范[S]. 中国建筑工业出版社, 2010.

      Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for seismic design of buildings[S]. China Architecture & Building Press, 2010.(in Chinese)