en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BarthholdiIII, JJ. and Hackman, S.T. Warehouse and Distribution Science[EB/OL].[2012-03]. http://www.isye.gatech.edu/~iib/wh/book/editions/wh-sci-0.95.pdf. KR Gue and RD Meller. Aisle configurations for unit-load warehouses[J]. IIE Transactions, 2009, 41(3): 171-182.
参考文献 2
PohlLM , Meller and KR GueRD . Turnover-based storage in non-traditional unitload warehouse designs[J]. IIE Transactions, 2011, 43(10): 703-720.
参考文献 3
蒋美仙, 冯定忠, 赵宴林, 等. 基于改进Fishbone的物流仓库布局优化[J]. 系统工程理论与实践, 2013, 33(11): 2920-2929.
JIANGMei-xian, FENGDing-zhong, ZHAOYan-lin, et al. Optimization of logistics warehouse layout based on the improved Fishbone layout[J]. System Engineering -Theory & Practice, 2013, 33(11): 2920-2929.
参考文献 4
刘艳秋, 张义华, 焦妮. 基于Fishbone的仓储货位分配优化[J]. 物流科技, 2014, 37(12): 66-70.
LiuYan-qiu, ZHANGYi-hua, JIAONi. Slotting Optimization Allocation of Storage Based on Fishbone[J]. Logistics Sci-Tech, 2014, 37(12): 66-70.
参考文献 5
CardonaLF , SotoDF , RiveraL . Detailed design of fishbone warehouse layouts with vertical travel[J]. International Journal of Production Economics, 2015, 170(C): 825-837.
参考文献 6
刘权, 杨鹏辉, 刘润茜, 等. 基于遗传算法的仓库布局优化模型及最优角度的确定[J]. 河北北方学院学报, 2016, 32(3): 21-27.
LIUQuan, YANGPeng-hui, LIURun-qian, et al. Optimization Model of Warehouse Layout and Determination of Optimal Angel Based on Genetic Algorithm[J]. Jouenal of Hebei University(Natural Science Edition), 2016, 32(3): 21-27.
参考文献 7
刘少华. 多种智能算法在鱼骨布局拣选路径决策中的比较研究[D]. 北京: 北京物资学院, 2017.
LIUShao-hua. A Comparative Study on Mutil-intelligence Algorithm in Route Selection of Fishbone Layout[D]. Beijing: Beijing Wuzi University, 2017.
参考文献 8
刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730.
LIUAi-jun, YANGYu, LIFei, et al. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(10): 1722-1730.
参考文献 9
陈雪. 基于改进粒子群算法的A集团自动化立体仓库的优化研究[D]. 北京: 北京交通大学, 2018.
CHENXue. Research on optimization of A Group Automated Warehouse Based on Improved Particle Swarm Optimization algorithm[D]. Beijing: Beijing Jiaotong University, 2018.
参考文献 10
张晓东, 王茜. 多目标服务工作流混合粒子群调度算法[J]. 东南大学学报(自然科学版), 2010, 40(3): 491-495.
ZHANGXiao-dong, WANGQian. Hybrid particle swarm optimization algorithm for multi-objective scheduling in service work flows [J]. Journal of Southeast University, 2010, 40(3): 491-495.
参考文献 11
姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4): 74-80.
JIANGJian-guo, TIANMin, WANGXiang-qian, et al. Adaptive partcle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xian University, 2012, 39(4): 74-80.
参考文献 12
李乐, 曾德贵. 贯通式货架系统和Fishbone布局方法结合的物流仓库布局优化[J]. 物流技术, 2015, 34(2): 201-204.
LiLe, ZengDe-gui. Layout Optimization of Logistics Warehouse Based on Drive-in Rack System and Fishbone Plannning[J]. Logistics Technology, 2015, 34(2): 201-204.
参考文献 13
樊明, 郭艺, 贠超, 等. 基于自适应混合算法的智能存取系统动态路径规划[J]. 系统仿真学报, 2013, 25(7): 1543-1548.
FANMing, GUOYi, YUNChao, et al. Adaptive Hybrid Algorithm for Dynamic Path Planning Problem of Intelligent Access System[J]. Journal of System Simulation, 2013, 25(7): 1543-1548.
参考文献 14
Melh Celk and Haldun Sural. Order picking under random and turnover-based storage policies in fishbone aisle warehouse[J]. IIE Transactions, 2013, 46(3): 283-300.
目录 contents

    摘要

    为提高鱼骨型仓库布局下的订单拣选效率,基于拣货路径距离计算模型和以最小化拣货路径总距离为优化目标的拣选路径优化模型,提出一种混沌模拟退火粒子群优化算法,引入混沌理论使粒子更高效地遍历搜寻空间,同时结合了模拟退火算法的概率突跳特点使算法在迭代后期仍具有较好的全局寻优能力。最后,通过实例仿真验证了该算法在解决鱼骨型仓库布局拣选路径优化问题上的有效性,并通过与其他算法比较,证明了该算法的先进性,为鱼骨型仓库布局下拣选路径规划问题提供了新的解决思路。

    Abstract

    To improve the order picking efficiency on the fishbone aisle warehouse, a chaotic simulated annealing particle swarm optimization (SAPSO) algorithm was proposed based on the picking path distance calculation model and the picking path optimization model with the minimum distance of the picking path as the optimization objective. The chaos theory was introduced to improve the global convergence property. The simulated anneaing (SA) algorithm was adopted to make the algorithm has capability to jump out of the local optimization and achieve the global optimization. Finally, the outperformance of chaotic SAPSO algorithm to solve order picking optimization on fishbone aisle warehouse is verified by the simulation results and the comparison with other algorithms, and it provides a new solution to order picking problem on fishbone aisle warehouse.

    随着国家经济快速发展,物流产业也呈现快速发展的趋势,而仓储配送是其核心环节。为提高仓储物流管理水平,应对仓储配送环节进行合理优化。2012年Barthholdi 和 Hackman[1]提出有效进行仓储管理主要解决两个问题:一是快速地满足季节性和供应量等需求变化,二是整合和消除不必要的拣货路径。从仓库布局层面来说,设计仓库布局的最新趋势的改变拣选主通道的设计,以便更高效地进行拣选作业。2009年美国的学者Gue和Meller[1]提出并研究了鱼骨型仓库布局,并证明相比传统仓库布局,鱼骨型仓库布局的作业路径可减少约20%。2011年LM Pohl [2]等研究非传统仓库中的货位优化问题,并针对鱼骨型仓库布局提出了最佳的仓库布局方法。2013年蒋美[3]等提出一种改进的鱼骨型仓库布局方法,并设计最佳仓库布局角度。2015年刘艳[4]等基于鱼骨型仓库布局,建立仓储货位分配优化的数学模型,并设计遗传算法求解。2015年LF Cardona[5]等提出一种生成鱼骨型仓库布局的三维详细设计方法,通过寻找四个主要特征值的优化模型来最小化仓库的总运营成本。2016年刘[6]等提出一种基于遗传算法的仓库布局优化模型,证明改进后的鱼骨型布局在仓库布局设计中具有更高的可行性和实用性。2017年刘少[7]等基于鱼骨型仓库布局用遗传算法、蚁群算法和布谷鸟算法对拣货路径问题进行求解。从以上研究可以看出,鱼骨型仓库布局相对与传统仓库布局的优势所在,大部分关于鱼骨型仓库布局的研究都处于仓库设计和仓储货位分配阶段,少有研究涉及到拣货作业。在鱼骨型仓库布局下,由于拣货主通道与子通道之间并非简单的平行或垂直关系,因此用于传统仓库布局下的拣货路径模型不可直接被用于这种新型的仓库布局下,本文将建立在鱼骨型仓库布局下适用的拣选路径优化模型,同时考虑到在拣选车辆以平均速度进行拣选作业时,总作业能耗和总作业时间与总作业距离呈正相关关系,因而在此模型中以总作业距离作为优化目标。

    目前常用于拣货路径优化问题的算法有:粒子群算法、模拟退火算法、遗传算法,遗传算法的操作繁杂,需要不断交叉变异,收敛速度慢,易陷入局部最优解;粒子群算法使用简单,收敛速度快,但容易陷入局部最[9];模拟退火算法全局搜索能力强,但搜索速度慢。为此,2013年刘爱[8]等提出混沌模拟退火粒子群算法,并将算法应用在车间调度问题中。本文提出采用混沌模拟退火粒子群算法求解鱼骨型仓库布局下路径规划问题,同时在算法的相关参数选择上采取自适应调整的策略,以提高算法的效率和求解精度。

  • 1 问题描述

    本文所研究的鱼骨型仓库布局示意图如图1所示,该仓库应用人到货的拣货系统。拣选作业由拣货员操作叉车进行作业,以存取货品点为起点。拣货员从不同的存储位置上收集订单上的货品。假设仓库只有一个出入点,每次完成存取作业后都必须回到出入点等待下一次的仓储作业,因此仓库的出入点就是仓库的存取点,简称P&D(Picking and Deposit)点。该仓库采用的是左右对称的仓库布局,其中有三条拣货主通道,三条主通道都通过P&D点。

    图1
                            鱼骨型仓库布局

    图1 鱼骨型仓库布局

    Fig.1 Fishbone warehouse layout

  • 1.1 问题参数与假设条件

    参数设定如下:

    W:仓库的宽度;

    Wr:两侧拣货通道和后部拣货通道的宽度;

    Wd:两条斜拣货通道的宽度;

    Wh:存储货格的长度;

    L: 仓库长度的一半;

    L1:拣货通道的宽度;

    L2:双排货架的宽度;

    α: 斜拣货通道的角度;

    仓库的拣选环境假设如下:

    1) 鱼骨型布局仓库左右两部分关于中心对称;

    2) 鱼骨型布局仓拣选通道的排列方式如图1所示,堆垛区1、2、3、4拣选通道数量相等,为m

    3) 鱼骨型布局仓库斜拣货通道角度α=45°;每个货格的长度、宽度、拣货通道宽度三者相等,即Wh=12L2=L1Wr=L1

    4) 拣选车辆在拣选作业开始时从P&D点出发,结束后回到P&D点;

    5) 拣选作业开始之前,满足所有订单的要求,且拣选作业过程中不会发生缺货现象;

    6) 待拣选货物存储于货架之上,货架由货格组成,每个货架的长度和宽度相等,不考虑货架高度;

    7) 拣选距离计算只考虑P&D与待拣货物所在位置的距离,垂直方向上的拣货距离忽略不计;

    8) 拣选距离计算不考虑拣选通道两侧货架的待拣货物所发生的左右移动距离;

    9) 一次拣选订单总量小于拣货车辆最大承载量;

  • 1.2 鱼骨型仓库布局拣货路径模型

    基于以上鱼骨型仓库布局的参数设定以及拣选环境的假设条件,本文所建立的拣选路径优化模型如下:

    目标函数:

    D=min(d01x01+i=1nj=1ndijxij+dn0xn0)

    D=min(d01+i=1nj=1ndijxij+dn0)
    (1)

    约束条件:

    i=1nxij=1,j=1,2,3,...,n
    (2)
    j=1nxij=1,i=1,2,3,...,n
    (3)
    i,jKxijK-1,KV
    (4)
    xij0,1
    (5)
    x01=1,xn0=1
    (6)

    式中:D为拣选车辆完成一次拣选作业总行走距离; ij为任意两货位;n为最后一个拣选货位;dij(1i,jn,ij)为货位i到货位j之间的最短距离;d01为P&D点到货位i的拣货距离,即从P&D点开始拣货作业;dn0表示货位i到P&D点的拣货距离,即完成拣货作业回到P&D点。

    xij=1,ij0,ij,i,j=1,2,3,...,n

    目标函数式(1)表示在一次拣选作业中最短的总行走距离;式(2)和式(3)表示所有待拣选点所在货位都被拣选且仅一次;式(4)表示除去未包含某个拣货点的路径解,即不存在小回路;式(5)表示货位i与货位j之间是否存在拣货路径;式(6)表示拣选车辆在进行拣选作业时从P&D点出发,拣选作业结束后需回到P&D点。

  • 1.3 鱼骨型仓库布局拣货距离计算模型

    鱼骨型布局仓库中的拣选路径优化问题属于NP难问题,把目标函数设定为拣选行走路径的总距离最短。为计算上述拣货路径优化模型中的d01dn0dij,首先,假设任一待拣选点的序号为(s,x,y,z),其中,s=1,2,3,4表示待拣选物品所在堆垛区的编号;x=1,2,...,X,表示待拣选物品所在的拣货通道的编号,x7(本文中的鱼骨布局仓库的通道数,如图3-2所示,共有7条);y=0,1,表示待拣选物品所在通道内的两侧,如果物品在通道的下侧或者右侧,则y=0,相反,如果物品在拣选通道的上侧或者左侧,则y=1z=1,2,3,...,Z,表示待拣选物品在第几个货格里,编号方法为离两侧和后部过道近的货格的编号为1,并依次编号为1,2,3,...,Z。假如待拣选点的序号为(1,2,0,3) 所表示的是位于堆垛区1,拣货通道2,下侧的货架,从左侧过道向右数第3个货格。P&D点的位置设为(0,0,0,0),编码为0。现假设有任意两个拣选点i,j,序号分别为(si,xi,yi,zi)(sj,xj,yj,zj)dij表示两点之间的距离。

    首先,对d01求解,数字1是指待拣选的第一个货位,可以是待拣选点中的任意一点,此处假设为1点,序号为s1,x1,y1,z1d01可表示为

    d01=((32-3)x1-z1+25-322)L1
    (7)

    dn0表示从最后一个拣选点回到P&D所行走的距离,此处假设点n为最后一个拣选点,点n的序号为sn,xn,yn,zn,此时,dn0 可表示为

    dn0=((32-3)xn-zn+25-322)L1
    (8)

    dij表示任意两个拣选点i,j之间的距离,可表示为

  • 1) 当i,j两拣选点位于同一拣选通道时,即xi=xj

    dij=zi-zj
    (9)
  • 2) 当i,j两拣选点位于不同一拣选通道时

    dij=min(32xi-xj-3(xi+xj)-(zi+zj)+50)L1(3xi-xj+(zi+zj)L1xi,xjX;zi,zjZ
    (10)

    3)当i,j两拣选点位于不同堆垛区内时,分以下情况讨论:

    (1)当i,j两拣选点分布在堆垛区1和堆垛区4两个不同区域内时

    dij=min(53-62+(32-3)(xi+xj)-zi-zj)L1(97-3xi-3xj-zi-zj)L1,xi,xjX;zi,zjZ
    (11)

    (2)当i,j两拣选点分布在堆垛区1和堆垛区2或堆垛区3和堆垛区4两个不同区域内时

    dij=min(50-3(xi+xj)-zi-zj+32xi-xj)L1(50-6xi-zi+zj+3xi-xj)L1(50-6xj-zi+zi+3xi-xj)L1xi,xjX;zi,zjZ
    (12)

    (3)当i,j两拣选点分布在堆垛区1和堆垛区3或堆垛区2和堆垛区4两个不同区域内时

    dij=min(53+(32-3)(xi+xj)-zi-zj)L1(47-3(xi-xj)-(zi-zj)L1xi,xjX;zi,zjZ
    (13)

    (4)当i,j两拣选点分布在堆垛区2和堆垛区3两个不同区域内时

    dij=min(3(xi+xj)+zi+zj-3)L1(53+(32-3)(xi+xj)-zi-zj)L1xi,xjX;zi,zjZ
    (14)

    式(7)到式(14)包含了图1所示鱼骨型仓库布局下任意两拣选点之间距离的求解方法。

  • 2 模型求解

    拣货路径规划问题是一个NP 难问题,因此采用粒子群算法(PSO, Particle Swarm Optimization)对该问题模型进行求解。在粒子群算法中,许多粒子被放在某个问题的搜索空间中,并以一定的速度在搜索空间探[10]。在一个D维的目标搜索空间中,由N个粒子组成的粒子群落,其中第k个粒子的位置表示为xk=(xk1,xk2,...,xkD),k=1,2,...,N,速度表示为vk=(vk1,vk2,...,vkD),k=1,2,...,N;个体极值是第k个粒子迄今为止搜索到的最优位置,可表示为pk=(pk1,pk2,...,pkD),k=1,2,...,N,适应度记为pbest;全局极值是整个粒子群落迄今为止搜索到的最优位置,可表示为pg=(pg1,pg2,...,pgD),k=1,2,...,N,适应度记为gbest。在每次迭代中,粒子的速度和位置基于公式(15)和公式(16)更新,直到满足最大迭代次数后停止。

    vkw*vk+φ1*rand1(pk-xk)+φ2*rand2(pg-xk)
    (15)
    xkxk+vk
    (16)

    其中w表示惯性权重,使其有拓展搜索空间的能力;φ1φ2表示学习因子,即每个粒子推向pkpg位置的统计加速项的权重大小;rand1rand2是在[0,1]范围内均匀分布的随机数。

    为解决粒子群算法计算过程中振荡与过早收敛的问题,提出混沌模拟退火粒子群优化算法(SAPSO, Simulated Annealing Particle Swarm Optimization),即在粒子群算法中引入模拟退火算法的概率突跳特性,使粒子群算法不但可以接受好的解,也能以一定概率接受不好的解,以提高算法的全局搜索性[8]。为提高算法的收敛速度,利用非线性自适应惯性权重w(t)代替公式(15)中的惯性权重值,其表达式为公式(17),使算法在前期跳出当前极值,在后期较快收敛。为优化粒子种群运动,提高搜索空间的多样性,本文采用混沌理论对rand1rand2进行动态调整。采用Logisitic模型产生混沌序[8]如公式(18)所示。

    w(t)=(wmax-wmin2)cos(πttmax)+(wmax+wmin2)
    (17)

    其中w(t)表示第t次迭代时的惯性权重取值,tmax表示最大迭代次数,t表示当前迭代次数,姜建[11]等提出wmax=0.95wmin=0.4时算法性能最优,本文采用此取值。

    randqt+1=4randqt(1-sqt),randq(0,1),q=1,2 
    (18)

    其中,randqt表示randq在第t次迭代时的值,由混沌理论可知,当randq1不等于0.25、0.5、0.75时,序列能呈现完全混沌的特性,变量randq可以不重复地遍历整个搜索空间,以提高变量randq的随机性。

    混沌模拟退火粒子群算法的流程图如图2所示:

    图2
                            混沌模拟退火粒子群算法流程图

    图2 混沌模拟退火粒子群算法流程图

    Fig.2 Flow chart of chaotic SAPSO

    混沌模拟退火粒子群算法的步骤如下:

    STEP 1 初始化参数设定。最大迭代次数tmax、粒子的速度vk、位置xk、学习因子φ1φ2、惯性权重w、模拟退火因子φsa

    STEP 2 初始化拣货路径。随机生成一系列初始路径集合,用随机模拟方法判断初始路径群体是否满足满足约束条件(2)-(6),以确保种群达到粒子群算法所需规模。

    STEP 3 粒子群算子操作。按φ1=φ1(1-t/tmax)φ2=φ2(1-t/tmax)φsa=φsa×0.97更新学习因子和模拟退火因子,同时按式(15)和(16)更新各粒子的位置和速度。

    STEP 4 交换序操作。确定个体到个体最优解和全局最优解的交换顺序,混沌产生rand1rand2序并和φ1φ2比较选择执行的交换序,进行交换。

    STEP 5 计算粒子适应度。对新种群的位置,计算适应度函数,即一次拣选作业完成行走总距离,如公式(1)所示,并更新个体的最优位置和最优适应值。

    STEP 6 模拟退火操作。

    1) 生成模拟退火初始解S1

    2) 插入扰动因子,生成模拟退火的新解S2

    3) 计算新解S2的适应度函数;

    4) 判断新解S2的适应度函数值是否小于初始解S1的适应度函数值。若不大于,则用新解S2代替模拟退火初始解S1,并转至步骤6)。若大于,则以φsa的概率大小接受新解,并转至步骤5);

    5) 产生伪随机数r,并判断φsa是否大于r。若大于,则用新解S2代替模拟退火初始解S1,并转至步骤6)。否则,则直接转至步骤6);

    6) 降低温度;

    7) 判断当前温度是否达到最低温度。若已达到,则退出模拟退火操作,并转至STEP 7。若未达到,则返回步骤1)。

    STEP 7 种群评估与优选。根据个体的最佳适应值,选出种群的最佳位置和最佳适应值,并保存下最佳适应值。

    STEP 8 判断算法终止。若满足最大迭代次数或目标函数减少幅度趋于收敛的预设条件,则输出拣选作业路径总距离以及对应的具体路径方案,算法终止;否则,返回STEP 3

  • 3 仿真及分析

    仿真对象为鱼骨型仓库布局,其各项参数取值参见1.1问题参数与假设条件。由于遗传算法的全局搜索能力强,所以选用遗传粒子群算[13] (GAPSO, Genetic Particle Swarm Optimization)与混沌SAPSO算法对比,以验证混沌SAPSO算法所得优化结果是否具有全局最优的特点。同时,PSO算法具有收敛速度快的优点,则选用PSO算法与混沌SAPSO算法对比迭代次数与收敛速度。

    仿真实验在Inter® Core™ i5-7300HQ,CPU主频为2.50GHz、8.00GB内存、Windows 10操作系统下进行,并利用MATLAB2016仿真工具编程实现。算法参数设置如表1所示:

    表1 PSO、混沌SAPSO及GAPSO算法参数设置

    Tab.1 Parameters of PSO, Chaotic SAPSO and GAPSO

    算法参数问题规模
    10203040
    PSOS100100100100
    tmax50100200200
    w0.80.80.80.8
    φ10.50.50.50.5
    φ20.70.70.70.7
    混沌SAPSOS100100100100
    tmax50100200200
    w0.80.80.80.8
    wmax0.950.950.950.95
    wmin0.40.40.40.4
    φ10.50.50.50.5
    φ20.70.70.70.7
    φsa0.10.10.10.1
    GAPSOS100100100100
    tmax50100200200
    pc0.80.80.80.8
    pm0.080.080.080.08

    注:S表示初始种群规模;pc表示交叉概率;pm表示变异概率。

    拣选点样本设置(以10个拣选点为例)如表2所示:

    表2 10个拣选点坐标样本

    Tab.2 The sample coorditions of 10 picked locations

    拣选点编号坐标拣选点编号坐标
    0(0,0,0,0)6(3,3,1,9)
    1(1,2,0,13)7(3,4,0,10)
    2(1,4,0,1)8(4,4,0,5)
    3(2,2,1,13)9(4,2,0,9)
    4(2,2,0,4)10(4,2,0,18)
    5(2,1,0,17)----

    PSO、混沌SAPSO和GAPSO算法对鱼骨型仓具布局下的拣选路径优化模型的求解结果如表3所示。从表中可以看出,混沌SAPSO算法在四种问题规模下的适应度值和收敛速度都要优于PSO和GAPSO算法,可见混沌SAPSO算法避免了PSO算法易陷入局部最优的缺点,同时适应度值比GAPSO算法所求得的结果更优。另外,混沌SAPSO相对PSO平均运行时间在问题规模为10、20、30、40时分别提高了42.01%、10.13%、4.18%、9.29%,混沌SAPSO相对GAPSO平均运行时间分别提高了2.74%、39.50%、54.46%、53.58%。

    表3 PSO、混沌SAPSO及GAPSO算法的性能比较

    Tab.3 Performance comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

    问题

    规模

    1020
    算法PSO混沌SAPSOGAPSOPSO混沌SAPSOGAPSO
    序号适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数
    1154.9439146.456146.456274.6984267.9742278.45120
    2146.4532146.4520146.454288.6982267.9712317.66162
    3146.4526146.4512146.4510286.6954272.2146276.21110
    4146.4539146.454146.4513290.6970267.9720309.18124
    5146.4526146.4513146.454297.9476270.4520293.18104
    6146.4526146.457146.4516309.4294267.9717282.94168
    7154.9434146.4516146.4512288.4584267.9732293.69118
    8146.4540146.4520146.453306.2164267.9713290.45128
    9146.4539146.4513146.456274.2158267.9712289.18100
    10156.4532146.4510146.455297.4564270.2150293.42162
    平均值149.1534146.4512146.458291.4473268.8626292.44129
    最小值146.4526146.454146.453274.2154267.9712267.21100

    问题

    规模

    3040
    算法PSO混沌SAPSOGAPSOPSO混沌SAPSOGAPSO
    序号适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数
    1327.9172306.4256357.15152517.46132329.1828436.66168
    2398.4276306.4229386.12173447.31130344.9433425.58156
    3418.4276306.4258378.66186517.92124352.1877413.94118
    4377.3975310.4511389.94142499.28118360.4232367.15163
    5396.8286303.1826385.39176522.46126340.9469442.91121
    6376.8678318.1833379.91174471.93100333.9134351.63126
    7338.4594306.9416374.12184464.18124341.6662394.63164
    8382.3398304.1822342.45186502.0384351.6928381.88162
    9400.4274306.4223363.91108434.52142338.9450418.91141
    10416.8898310.1819335.45124488.30113326.6982375.66142
    平均值383.3983307.8830369.31161486.54120342.0650400.90147
    最小值327.9172303.1811333.45108434.5284326.6928351.63118

    PSO、混沌SAPSO和GAPSO算法的适应度曲线如图3所示,从图中可以看出在四种问题规模下混沌SAPSO算法的收敛速度都比PSO和GAPSO算法要快,同时振荡现象得到了明显地改善。

    html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F004.jpg

    (a) 10个待拣选点

    html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F005.jpg

    (b) 20个待拣选点

    html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F006.jpg

    (c) 30个待拣选点

    html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F007.jpg

    (d) 40个待拣选点

    图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较

    Fig.3 Fitness Curve comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

    混沌SAPSO算法求解所得路径解的拣选顺序如下:

    10个拣选点010987643125020个拣选点011110675432891314161715181910120

    30个拣选点0151651211910867431314232425222127262829302120191718040个拣选点0223940232124252636342827293031323335383721183476516141311910812151719200以10个拣选点为例,优化后拣货路径示意图如图4所示。

    图4
                            10个拣选点的拣货路径示意图

    图4 10个拣选点的拣货路径示意图

    Fig.4 Order picking route of 10 picked locations

  • 4 结论

    本文的研究基于鱼骨型仓库布局的拣货路径问题,对建立的拣货距离计算和拣货路径优化模型,采用混沌模拟退火粒子群算法进行求解,混沌模拟退火粒子群算法采用混沌理论对粒子群优化算法中的参数rand1rand2进行动态调整,同时引入模拟退火算法对粒子群优化算法中的每个粒子位置局部寻优,并设置不同的问题规模,对算法的性能进行了分析。仿真结果表明,混沌模拟退火粒子群算法在适应度值、迭代次数、收敛速度、运行时间和振荡效果方面都优于粒子群优化算法和遗传粒子群算法。

    本文的拣货距离计算和拣货路径优化模型可为鱼骨型仓库布局的研究提供决策参考,在后续研究中可进一步考虑鱼骨型仓库布局下的订单分批问题。

  • 参考文献

    • 1

      Barthholdi III, JJ. and Hackman, S.T. Warehouse and Distribution Science[EB/OL].[2012-03]. http://www.isye.gatech.edu/~iib/wh/book/editions/wh-sci-0.95.pdf. KR Gue and RD Meller. Aisle configurations for unit-load warehouses[J]. IIE Transactions, 2009, 41(3): 171-182.

    • 2

      LM Pohl , RD Meller and KR Gue . Turnover-based storage in non-traditional unitload warehouse designs[J]. IIE Transactions, 2011, 43(10): 703-720.

    • 3

      蒋美仙, 冯定忠, 赵宴林, 等. 基于改进Fishbone的物流仓库布局优化[J]. 系统工程理论与实践, 2013, 33(11): 2920-2929.

      JIANG Mei-xian, FENG Ding-zhong, ZHAO Yan-lin, et al. Optimization of logistics warehouse layout based on the improved Fishbone layout[J]. System Engineering -Theory & Practice, 2013, 33(11): 2920-2929.

    • 4

      刘艳秋, 张义华, 焦妮. 基于Fishbone的仓储货位分配优化[J]. 物流科技, 2014, 37(12): 66-70.

      Liu Yan-qiu, ZHANG Yi-hua, JIAO Ni. Slotting Optimization Allocation of Storage Based on Fishbone[J]. Logistics Sci-Tech, 2014, 37(12): 66-70.

    • 5

      LF Cardona , DF Soto , L Rivera . Detailed design of fishbone warehouse layouts with vertical travel[J]. International Journal of Production Economics, 2015, 170(C): 825-837.

    • 6

      刘权, 杨鹏辉, 刘润茜, 等. 基于遗传算法的仓库布局优化模型及最优角度的确定[J]. 河北北方学院学报, 2016, 32(3): 21-27.

      LIU Quan, YANG Peng-hui, LIU Run-qian, et al. Optimization Model of Warehouse Layout and Determination of Optimal Angel Based on Genetic Algorithm[J]. Jouenal of Hebei University(Natural Science Edition), 2016, 32(3): 21-27.

    • 7

      刘少华. 多种智能算法在鱼骨布局拣选路径决策中的比较研究[D]. 北京: 北京物资学院, 2017.

      LIU Shao-hua. A Comparative Study on Mutil-intelligence Algorithm in Route Selection of Fishbone Layout[D]. Beijing: Beijing Wuzi University, 2017.

    • 8

      刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730.

      LIU Ai-jun, YANG Yu, LI Fei, et al. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(10): 1722-1730.

    • 9

      陈雪. 基于改进粒子群算法的A集团自动化立体仓库的优化研究[D]. 北京: 北京交通大学, 2018.

      CHEN Xue. Research on optimization of A Group Automated Warehouse Based on Improved Particle Swarm Optimization algorithm[D]. Beijing: Beijing Jiaotong University, 2018.

    • 10

      张晓东, 王茜. 多目标服务工作流混合粒子群调度算法[J]. 东南大学学报(自然科学版), 2010, 40(3): 491-495.

      ZHANG Xiao-dong, WANG Qian. Hybrid particle swarm optimization algorithm for multi-objective scheduling in service work flows [J]. Journal of Southeast University, 2010, 40(3): 491-495.

    • 11

      姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4): 74-80.

      JIANG Jian-guo, TIAN Min, WANG Xiang-qian, et al. Adaptive partcle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xian University, 2012, 39(4): 74-80.

    • 12

      李乐, 曾德贵. 贯通式货架系统和Fishbone布局方法结合的物流仓库布局优化[J]. 物流技术, 2015, 34(2): 201-204.

      Li Le, Zeng De-gui. Layout Optimization of Logistics Warehouse Based on Drive-in Rack System and Fishbone Plannning[J]. Logistics Technology, 2015, 34(2): 201-204.

    • 13

      樊明, 郭艺, 贠超, 等. 基于自适应混合算法的智能存取系统动态路径规划[J]. 系统仿真学报, 2013, 25(7): 1543-1548.

      FAN Ming, GUO Yi, YUN Chao, et al. Adaptive Hybrid Algorithm for Dynamic Path Planning Problem of Intelligent Access System[J]. Journal of System Simulation, 2013, 25(7): 1543-1548.

    • 14

      Melh Celk and Haldun Sural. Order picking under random and turnover-based storage policies in fishbone aisle warehouse[J]. IIE Transactions, 2013, 46(3): 283-300.

张新艳

机 构:同济大学 机械与能源工程学院,上海 201804

Affiliation:School of mechanical engineering Tongji University, Shanghai 201804, China

角 色:第一作者

Role:First author

作者简介:张新艳(1974-), 女,讲师, 博士, 主要研究方向为物流设施规划与设计. E-mail:

周雨晴

机 构:同济大学 机械与能源工程学院,上海 201804

Affiliation:School of mechanical engineering Tongji University, Shanghai 201804, China

角 色:通讯作者

Role:Corresponding author

邮 箱:1630921@tongji.edu.cn.

作者简介:周雨晴(1994-), 女,研究生,主要研究方向为物流设施规划与设计. E-mail: 1630921@tongji.edu.cn.

html/jtuns/19029/media/7315b991-e18e-4728-b4e2-df2a488d064f-image001.png
html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F002.jpg
算法参数问题规模
10203040
PSOS100100100100
tmax50100200200
w0.80.80.80.8
φ10.50.50.50.5
φ20.70.70.70.7
混沌SAPSOS100100100100
tmax50100200200
w0.80.80.80.8
wmax0.950.950.950.95
wmin0.40.40.40.4
φ10.50.50.50.5
φ20.70.70.70.7
φsa0.10.10.10.1
GAPSOS100100100100
tmax50100200200
pc0.80.80.80.8
pm0.080.080.080.08
拣选点编号坐标拣选点编号坐标
0(0,0,0,0)6(3,3,1,9)
1(1,2,0,13)7(3,4,0,10)
2(1,4,0,1)8(4,4,0,5)
3(2,2,1,13)9(4,2,0,9)
4(2,2,0,4)10(4,2,0,18)
5(2,1,0,17)----

问题

规模

1020
算法PSO混沌SAPSOGAPSOPSO混沌SAPSOGAPSO
序号适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数
1154.9439146.456146.456274.6984267.9742278.45120
2146.4532146.4520146.454288.6982267.9712317.66162
3146.4526146.4512146.4510286.6954272.2146276.21110
4146.4539146.454146.4513290.6970267.9720309.18124
5146.4526146.4513146.454297.9476270.4520293.18104
6146.4526146.457146.4516309.4294267.9717282.94168
7154.9434146.4516146.4512288.4584267.9732293.69118
8146.4540146.4520146.453306.2164267.9713290.45128
9146.4539146.4513146.456274.2158267.9712289.18100
10156.4532146.4510146.455297.4564270.2150293.42162
平均值149.1534146.4512146.458291.4473268.8626292.44129
最小值146.4526146.454146.453274.2154267.9712267.21100

问题

规模

3040
算法PSO混沌SAPSOGAPSOPSO混沌SAPSOGAPSO
序号适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数适应度值迭代次数
1327.9172306.4256357.15152517.46132329.1828436.66168
2398.4276306.4229386.12173447.31130344.9433425.58156
3418.4276306.4258378.66186517.92124352.1877413.94118
4377.3975310.4511389.94142499.28118360.4232367.15163
5396.8286303.1826385.39176522.46126340.9469442.91121
6376.8678318.1833379.91174471.93100333.9134351.63126
7338.4594306.9416374.12184464.18124341.6662394.63164
8382.3398304.1822342.45186502.0384351.6928381.88162
9400.4274306.4223363.91108434.52142338.9450418.91141
10416.8898310.1819335.45124488.30113326.6982375.66142
平均值383.3983307.8830369.31161486.54120342.0650400.90147
最小值327.9172303.1811333.45108434.5284326.6928351.63118
html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F004.jpg
html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F005.jpg
html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F006.jpg
html/jtuns/19029/alternativeImage/7315b991-e18e-4728-b4e2-df2a488d064f-F007.jpg
html/jtuns/19029/media/7315b991-e18e-4728-b4e2-df2a488d064f-image007.png

图1 鱼骨型仓库布局

Fig.1 Fishbone warehouse layout

图2 混沌模拟退火粒子群算法流程图

Fig.2 Flow chart of chaotic SAPSO

表1 PSO、混沌SAPSO及GAPSO算法参数设置

Tab.1 Parameters of PSO, Chaotic SAPSO and GAPSO

表2 10个拣选点坐标样本

Tab.2 The sample coorditions of 10 picked locations

表3 PSO、混沌SAPSO及GAPSO算法的性能比较

Tab.3 Performance comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较 -- (a) 10个待拣选点

Fig.3 Fitness Curve comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较 -- (b) 20个待拣选点

Fig.3 Fitness Curve comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较 -- (c) 30个待拣选点

Fig.3 Fitness Curve comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

图3 PSO、混沌SAPSO及GAPSO算法适应度曲线比较 -- (d) 40个待拣选点

Fig.3 Fitness Curve comparison between PSO, Chaotic SAPSO and GAPSO in 10 experiments

图4 10个拣选点的拣货路径示意图

Fig.4 Order picking route of 10 picked locations

image /

无注解

无注解

S表示初始种群规模;pc表示交叉概率;pm表示变异概率。

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Barthholdi III, JJ. and Hackman, S.T. Warehouse and Distribution Science[EB/OL].[2012-03]. http://www.isye.gatech.edu/~iib/wh/book/editions/wh-sci-0.95.pdf. KR Gue and RD Meller. Aisle configurations for unit-load warehouses[J]. IIE Transactions, 2009, 41(3): 171-182.

    • 2

      LM Pohl , RD Meller and KR Gue . Turnover-based storage in non-traditional unitload warehouse designs[J]. IIE Transactions, 2011, 43(10): 703-720.

    • 3

      蒋美仙, 冯定忠, 赵宴林, 等. 基于改进Fishbone的物流仓库布局优化[J]. 系统工程理论与实践, 2013, 33(11): 2920-2929.

      JIANG Mei-xian, FENG Ding-zhong, ZHAO Yan-lin, et al. Optimization of logistics warehouse layout based on the improved Fishbone layout[J]. System Engineering -Theory & Practice, 2013, 33(11): 2920-2929.

    • 4

      刘艳秋, 张义华, 焦妮. 基于Fishbone的仓储货位分配优化[J]. 物流科技, 2014, 37(12): 66-70.

      Liu Yan-qiu, ZHANG Yi-hua, JIAO Ni. Slotting Optimization Allocation of Storage Based on Fishbone[J]. Logistics Sci-Tech, 2014, 37(12): 66-70.

    • 5

      LF Cardona , DF Soto , L Rivera . Detailed design of fishbone warehouse layouts with vertical travel[J]. International Journal of Production Economics, 2015, 170(C): 825-837.

    • 6

      刘权, 杨鹏辉, 刘润茜, 等. 基于遗传算法的仓库布局优化模型及最优角度的确定[J]. 河北北方学院学报, 2016, 32(3): 21-27.

      LIU Quan, YANG Peng-hui, LIU Run-qian, et al. Optimization Model of Warehouse Layout and Determination of Optimal Angel Based on Genetic Algorithm[J]. Jouenal of Hebei University(Natural Science Edition), 2016, 32(3): 21-27.

    • 7

      刘少华. 多种智能算法在鱼骨布局拣选路径决策中的比较研究[D]. 北京: 北京物资学院, 2017.

      LIU Shao-hua. A Comparative Study on Mutil-intelligence Algorithm in Route Selection of Fishbone Layout[D]. Beijing: Beijing Wuzi University, 2017.

    • 8

      刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730.

      LIU Ai-jun, YANG Yu, LI Fei, et al. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(10): 1722-1730.

    • 9

      陈雪. 基于改进粒子群算法的A集团自动化立体仓库的优化研究[D]. 北京: 北京交通大学, 2018.

      CHEN Xue. Research on optimization of A Group Automated Warehouse Based on Improved Particle Swarm Optimization algorithm[D]. Beijing: Beijing Jiaotong University, 2018.

    • 10

      张晓东, 王茜. 多目标服务工作流混合粒子群调度算法[J]. 东南大学学报(自然科学版), 2010, 40(3): 491-495.

      ZHANG Xiao-dong, WANG Qian. Hybrid particle swarm optimization algorithm for multi-objective scheduling in service work flows [J]. Journal of Southeast University, 2010, 40(3): 491-495.

    • 11

      姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4): 74-80.

      JIANG Jian-guo, TIAN Min, WANG Xiang-qian, et al. Adaptive partcle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xian University, 2012, 39(4): 74-80.

    • 12

      李乐, 曾德贵. 贯通式货架系统和Fishbone布局方法结合的物流仓库布局优化[J]. 物流技术, 2015, 34(2): 201-204.

      Li Le, Zeng De-gui. Layout Optimization of Logistics Warehouse Based on Drive-in Rack System and Fishbone Plannning[J]. Logistics Technology, 2015, 34(2): 201-204.

    • 13

      樊明, 郭艺, 贠超, 等. 基于自适应混合算法的智能存取系统动态路径规划[J]. 系统仿真学报, 2013, 25(7): 1543-1548.

      FAN Ming, GUO Yi, YUN Chao, et al. Adaptive Hybrid Algorithm for Dynamic Path Planning Problem of Intelligent Access System[J]. Journal of System Simulation, 2013, 25(7): 1543-1548.

    • 14

      Melh Celk and Haldun Sural. Order picking under random and turnover-based storage policies in fishbone aisle warehouse[J]. IIE Transactions, 2013, 46(3): 283-300.