en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
CaoS, WangJ. Statistical summary and case studies of strong wind damage in China [J]. Journal of Disaster Research, 2013, 8(6):1096-1102.
参考文献 2
XueM, ZhaoK, WangM, et al. Recent significant tornadoes in China [J]. Advances in Atmospheric Sciences, 2016, 33(11):1209-1217.
参考文献 3
Alexander CurtisR., JoshuaWurman . The 30 May 1998 Spencer, South Dakota, Storm. Part I: The Structural Evolution and Environment of the Tornadoes. Monthly Weather Review, 2010,133 (133):72-97
参考文献 4
LeK, HaanF L, GallusW A, et al. CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements[J].Wind & Structures An International Journal,2008,11 (2):75-96.
参考文献 5
YingS J, ChangC C. Exploratory Model Study of Tornado-Like Vortex Dynamics [J]. Journal of the Atmospheric Sciences, 1970, 27 (1):3-14.
参考文献 6
WardN B. The exploration of certain features of tornado dynamics using a laboratory model [J]. Journal of the Atmospheric Sciences, 1972, 29 (6): 1194-1204.
参考文献 7
ChurchC R. Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation [J]. J.atmos.sci, 1979, 36(36):1755-1776.
参考文献 8
LundD E, SnowJ T. Laser Doppler velocimeter measurements in tornado like vortices [J]. Washington Dc American Geophysical Union Geophysical Monograph, 1993, 79.
参考文献 9
MishraA R, JamesD L, LetchfordC W. Physical simulation of a single-celled tornado-like vortex, Part A: Flow field characterization [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1243-1257.
参考文献 10
MishraA R, JamesD L, LetchfordC W. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1258-1273.
参考文献 11
ClelandJ D. Laboratory measurements of velocity profiles in simulated tornado-like vortices [J]. Journal of Undergraduate Research in Physics, 2002(1).
参考文献 12
JrF L H, SarkarP P, GallusW A. Design, construction and performance of a large tornado simulator for wind engineering applications [J]. Engineering Structures, 2008, 30 (4): 1146-1159.
参考文献 13
HanganH, RefanM, JubayerC, et al. Novel techniques in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 171:12-33.
参考文献 14
王锦, 周强, 曹曙阳,等. 龙卷风风场的试验模拟[J]. 同济大学学报(自然科学版), 2014, 42(11):1654-1659.
WANGJin, ZHOUQiang, CAOShuyang, CAOJinxin. Physical Study on Tornado-like Flow Based on Tornado Vortex Simulator[J]. JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 2014, 42(11):1654-1659.
参考文献 15
顾明. 土木结构抗风研究进展及基础科学问题—建筑、环境与土木工程Ⅱ[M]. 北京: 科学出版社, 2006.
GuMing. The research process and basic scientific issues about civil structure-architectural, environmental & civil engineering Ⅱ [M]. Beijing: Science Press, 2006.
参考文献 16
罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2):21-29.
LUOKai-wen, YANGYi, XIEZhuang-ning. A COMPARATIVE STUDY ON THE SIMULATION OF NEUTRAL ATMOSPHERIC BOUNDARY LAYER BASED ON THE k-ε TURBULENCE MODEL[J]. ENGINEERING MWECHANIUCS, 2018, 35(2):21-29.
参考文献 17
Diamond ChrisJ., Wilkins EugeneM. Translation Effects on Simulated Tornadoes. Journal of Atmospheric Sciences, 1984,41(17):2574-2580.
参考文献 18
LewellenW. S., LewellenD. C., SykesR. I. Large-Eddy Simulation of a Tornado's Interaction with the Surface. Journal of the Atmospheric Sciences, 1997, 54(5): 581-605
参考文献 19
LewellenD. C., LewellenW. S., XiaJ. The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface. Journal of the Atmospheric Sciences, 2000, 57(4): 527-544.
参考文献 20
IshiharaT, OhS, TokuyamaY. Numerical study on flow fields of tornado-like vortices using the LES turbulence model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):239-248.
参考文献 21
李雪. 基于数值模拟系统的台风涡结构模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009.
LIYue. Simulation of Vortex Structures of Typhoons with Numerical Simulation[D]. Harbin: Harbin Institute of Technology.
参考文献 22
徐枫, 肖仪清, 李波, 等. 龙卷风风场特性的CFD数值模拟[J]. 空气动力学学报, 2013, 31(3):350-356.
XUFeng, XIAOYi-qing, LIBo, Jin-pingOU . CFD numerical simulation of tornado wind field characteristics. ACTA Aerodynamica Sinica, 2013, 31(3): 350-356.
参考文献 23
WangJ, CaoS, PangW, et al. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices[J]. Boundary-Layer Meteorology, 2017, 162(2):319-339.
参考文献 24
TangZ, FengC, WuL, et al. Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator[J]. Boundary-Layer Meteorology, 2017(9):1-24.
参考文献 25
KarstensC D, SamarasT M, LeeB D, et al. Near-Ground Pressure and Wind Measurements in Tornadoes[J]. Monthly Weather Review, 2010, 138(7): 2570-2588
目录 contents

    摘要

    基于同济大学研制的龙卷风物理模拟装置,运用数值模拟方法构建了物理模拟器的数值计算模型,并通过对比龙卷风风场的物理实验模拟结果和现场实测结果,验证了数值计算模型的可行性。在此验证基础上,研究了三种不同涡流比条件下的龙卷风风场结构,对比了不同涡流比条件下龙卷风的三维风场速度(切向速度、径向速度和轴向速度)分布形态、压力降分布、龙卷风涡核半径和气流脉动特性。研究结果表明:随着涡流比的增大,龙卷风风场最大切向风速逐渐增大,涡核中心气压降明显降低,涡核半径随之变大,涡核中心附近切向风速的标准差变小。涡流比的增大使龙卷风单涡核逐渐破碎,发展到双涡核。

    Abstract

    A numerical Computational Fluid Dynamics (CFD) model to simulate tornado-like vortices was proposed in this study. The tornado-generation mechanism was similar as that of the physical generator developed at Tongji University. The feasibility of this numerical model was verified by comparing the simulation results associated with tornado-like vortices with the experimental and field observation data. Furthermore, the three wind velocity components at tangential, radial and axial directions, pressure drops, vortex radii and turbulence characteristics of tornado-like vortices at three swirl ratios were investigated. The present study shows that, with the increase of swirl ratio, the maximum tangential velocity and the radius of vortex core increase while the pressure and the standard deviation of tangential velocity around the tornado-like vortex center decrease. In addition, the single tornado-like vortex gradually breaks down and develops into a double-core structure.

    联合国防灾署的统计资料表明我国是世界上自然灾害经济损失最严重的3个国家之一,风灾因发生频率高且影响范围大成为防灾减灾工作的重点对象之[1]。龙卷风的机理区别于常规直线型大气边界层强风,具有旋转剧烈、突发性强、风速变化剧烈等特点,表现出强烈的三维流场特性。相对于其他风致灾害,龙卷风的发生将会导致更加严重的风灾。近年来,在我国东部和南部地区出现过多次较为严重的龙卷风事件,导致众多低矮民居、输电线塔和工业厂房等发生较为严重的破坏甚至倒[2]。因此,有必要明确龙卷风的近地面风场结构,并在重要建筑结构的抗风设计考虑龙卷风的荷载效应。

    自20世纪90年代始,移动多普勒雷达被广泛地运用于监测龙卷风。1998年5月30日,美国South Dakota发生了至少两起强龙卷风,其中经过Spencer的一起经DOW移动雷达观测得到了珍贵的龙卷风风速数据,龙卷风中心非常靠近DOW-3观测[3]。由于实测龙卷风风险较大,机会极少,且雷达无法准确观测到近地面的风场数[4],因而目前的研究以物理实验研究和数值模拟研究为主。

    Chang[5]建立世界上第一台可用于龙卷风旋涡模拟的设备,并研究了龙卷风旋涡内的切向速度和径向速度的剖面。基于Chang的理念,Ward[6]在模拟器顶部安装了控制风机来产生上升气流,开发出了应用最广的Ward型龙卷风模拟装置,此模拟器考虑了径向入流与切向环流的比例引起的龙卷风的单涡结构变化,并预测了多涡结构的可能,较好地重现了实际龙卷风的结构。基于Ward型模拟系统,较多学者开展了对龙卷风旋涡结构的物理实验研[7][8][9][10][11]。美国爱荷华州立大学的Haan[12]基于Ward型模拟器的设计理念,将导流板设置在模拟器的顶部,利用排风扇产生上升气流,设计出了一种新型龙卷风模拟器,该模拟器还能实现模拟现实中龙卷风的移动效应。加拿大Western University的Hangan[13]研发了WindEEE ( Wind Engineering, Energy and Environment ) Dome,该设备可用于模拟不同类型的风场,诸如龙卷风、下击暴流和阵风锋面等,是一种新型的三维实验室。为了研究龙卷风对桥梁、建筑结构的作用,同济大学也建立了新型龙卷风模拟[14]。该模拟器基于Haan[12]的设计原理建造,可以方便地研究龙卷风风场特性以及对结构的影响。

    土木结构风荷载和效应的数值模拟及数值风洞是结构风工程研究中具有战略意义的发展方向,也是当前国际风工程研究的一个热[15][16]。Diamond[17]通过数值模拟的方法研究了粗糙度对龙卷风涡结构的影响,发现粗糙度会加强风速但会减小涡流比;Lewellen D.C.[18]采用大涡模拟方法研究了相关参数对龙卷风风场的影响,发现即使是相同涡流比的情况下,龙卷风涡结构特性也会因诸多参数的不同而不同,主要包括粗糙度、龙卷风移动速度、入流边界情况等;Lewellen[19]通过数值模拟的方法研究了涡流比及粗糙度对风场的影响,发现增加入流会减小涡流比;Ishihara[20]采用大涡模拟方法研究了龙卷风涡结构特性,其选用了Ward型龙卷风模拟器原型,并成功模拟出单涡及双涡类龙卷风涡结构。李[21]基于Ward型龙卷风模拟器的数值模型生成了与台风涡类似的涡结构。徐枫[22]建立了龙卷风发生装置的数值计算模型,对具有单涡结构的龙卷风风场进行了研究。

    本文采用数值模拟的研究手段,运用大涡模拟方法模拟了三种不同涡流比条件下的龙卷风风场结构。运用物理试验模拟数据和现场实测龙卷风风场数据验证了数值模拟的可行性。研究了龙卷风三维风场速度在不同方向上的分布、龙卷风涡核中心气压降、龙卷风涡核半径和龙卷风气流脉动特性,探讨了涡流比对龙卷风风场的影响效应。

  • 1 研究方法与数值模型

  • 1.2 控制方程

    大涡模拟首先在湍流控制方程中将小尺度涡滤掉,其次通过考虑附加应力项来再现湍流流场。本文运用开源计算软件OpenFOAM,采用大涡模拟方法,亚格子模型选用标准Smagorinsky模型,控制方程如下:

    u¯it+u¯ju¯ixj=-pxi+1Re2u¯ixkxk-τijxj
    (1)
    u¯ixi=0
    (2)

    式中:u为速度,p为压强,τij为亚格子应力。其中:

    τij=-13δijτkk+2veS¯ij
    (3)
    S¯ij=12u¯ixj+u¯jxi
    (4)
    ve=CsΔ22S¯ijS¯ij1/2
    (5)

    式中:S¯ij为应变速度张量;ve表示湍流粘性系数;Cs为Smagorinsky常数,本文取0.1;Δ表示大涡模拟的滤波宽度。

  • 1.2 数值模型与边界条件

    同济大学龙卷风模拟器是国内首个ISU型龙卷风模拟器,如图1所示。该龙卷风模拟器基于Haan[12]的设计原理而建造,整个系统由三个同轴圆筒状构成,风机和导流板放置在模拟器顶部,这样气流经风机吸收,通过导流板和外围圆筒,在升降平台与蜂窝网间形成龙卷风涡旋,此类模拟器为回流式风洞,试验平台为开口式,可以更方便研究龙卷风动力特性以及对结构的影响。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F002.jpg

    (a) 示意图

    html/jtuns/19050/media/a974c416-d061-4c68-8ec9-32385d3100de-image002.png

    (b) 实体图

    图1 同济大学龙卷风模拟器

    Fig.1 Tornado vortex simulator in Tongji University

    基于同济大学龙卷风模拟器,建立其数值模型,如图2所示。数值模型尺寸与物理模拟器尺寸一致。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F005.jpg

    (a) 剖面图

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F006.jpg

    (b) 三维图

    图2 数值计算模型

    Fig.2 Numerical simulation model

    计算模型网格划分如图3所示。在竖直方向,近地面风场特性为研究重点,因此在地面附近的网格最为精细,竖直方向网格尺寸以小于1.2的比例增加。在水平方向,涡核中心和涡核半径附近的流场特性也是研究重点,因此中心网格最为精细,水平方向网格也以小于1.2的比例增大,网格总数为120万左右。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F008.jpg

    (a) 三维图

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F009.jpg

    (b) 主视图

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F010.jpg

    (c) 底视图

    图3 数值计算模型网格

    Fig.3 Mesh of numerical simulation model

    边界条件设置见表1。其中,入口“inlet”边界给定初速度,由轴向速度和切向速度组成。其中轴向速度v=1m/s,切向速度不定,通过改变切向速度大小可得到不同的涡流比结果。“outletInlet”边界物理意义为:当该边界的速度方向朝外时,速度定值为零;当该边界的速度方向朝内时,速度边界为零梯度。

    表1 边界条件设置汇总

    Tab.1 Setup of boundary conditions

    边界名速度边界条件压力边界条件
    inlet定值零梯度
    upper outlet零梯度定值0
    lower outletoutletInlet零梯度
    其他边界no-slip wallno-slip wall
  • 1.3 求解格式

    本文采用有限体积法进行计算,差分格式采用二阶中心差分,采用PIMPLE算法。计算到t=7s时流场已经稳定。本文所有算例均取t=10s-30s时间间隔内的数据进行统计分析。

  • 2 参数定义与实验工况

    龙卷风风场特性受诸多因素的影响,主要有:涡流比、aspect ratio、径向雷诺数、入流区高度、入流半径和出口半径等。其中,涡流比是影响龙卷风风场特性最重要的参[13],随着涡流比的增大,流场从层流过渡为湍流,从单涡核结构过渡到双涡、多涡结构。涡流比的定义如下:

    S=Γ2Qa=2πR0HUtdh2Qa
    (6)

    式中:Γ为环向流量;Q为单位时间内通过模拟器的气流流量;a为aspect ratio,定义为:a=H/r0H为入流高度,本文设置为0.2 m,r0为上升气流半径,本文设置为0.25 m。R为模拟器入流半径,本文设置为0.625 m;Ut为切向速度。

    径向雷诺数的定义如下:

    Re=QHυ
    (7)

    式中:Q定义同上;υ为空气运动粘度,取值为1.48×10-5 m2/s。

    本文主要研究了三种不同涡流比条件下的龙卷风风场特性。算例参数汇总如表2所示。

    表2 算例参数汇总

    Tab.2 Numerical simulation cases

    算例SRe

    Utmax

    (m/s)

    Rmax

    (m)

    hmax

    (m)

    10.2351.82×1053.0740.0230.058
    20.5461.82×1054.9170.0430.028
    30.7681.82×1055.1200.0700.031

    注:其中,Utmax为流场中最大切向速度;hmax为最大切向速度发生平面的高度;RmaxUtmax发生处距离模拟器中心距离,即hmax高度处的涡核半径。

  • 3 计算结果分析

  • 3.1 数值模拟结果验证

    将数值模拟结果与物理实验结果和现场实测结果进行对比分析,以验证数值模拟的可行性。龙卷风风场可以用三维速度和气压降进行描述。三维速度分量中切向速度为最主要的分量,气压降往往是造成结构破坏的最主要因素。因此,数值结果的验证主要针对切向速度分量和气压降进行分析。

    图4所示为数值模拟在不同涡流比条件下h=0.5hmax高度平面的切向速度沿径向分布与物理实验结[23]、现场实测结[13]和理论模[24]的对比。图中的纵横坐标分别基于当前高度处的最大切向速度和涡核半径进行无量纲化处理。图示表明,通过数值模拟得到的龙卷风切向速度分布与通过物理实验以及现场实测得到的结果具有一定的一致性。

    图4
                            平均切向速度沿径向分布的对比

    图4 平均切向速度沿径向分布的对比

    Fig.4 Comparison of normalized mean tangential velocity

    图5所示为不同研究方法之间关于压力降分布的对比。根据Karstens[25]的现场实测结果,Webb龙卷风的涡核形态不明确,Tipton龙卷风为双涡核龙卷风。根据图5(a),低涡流比工况S=0.235数值模拟的计算结果和物理试验的研究结果、Webb龙卷风实测数据吻合较好。根据图5(b),高涡流比工况S=0.546数值模拟的计算结果和物理试验的研究结果、Tipton龙卷风实测数据吻合较好。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F013.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F014.jpg

    (b) S=0.546

    图5 压力降沿径向分布的对比

    Fig.5 Comparison of normalized mean pressure deficit

    通过以上关于切向速度分布和气压降分布的对比分析,验证了数值模拟龙卷风的可行性。

  • 3.1 流场平均特性

    图6给出了平均切向速度沿径向的分布。其中纵横坐标分别用最大切向速度Utmax和涡核半径Rmax进行无量纲处理。可以发现,不同高度平面的切向速度分布形式存在差异。在涡核半径内部,高度越高,切向速度增长率越小;在涡核半径外部,高度越高,切向速度衰减率越小。随着高度的增加,涡核半径逐渐变大,不同高度平面内最大切向速度先增大后减小。不同涡流比条件下的平均切向速度分布大致相同。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F016.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F017.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F018.jpg

    (c) S=0.768

    图6 平均切向速度沿径向的分布

    Fig.6 Normalized mean tangential velocity as a function of radial distance

    图7给出了平均切向速度沿轴向的分布。低涡流比S=0.235条件下,涡核半径内外的切向速度分布与大气边界层风剖面接近。较高涡流比(S=0.546、S=0.768)条件下,涡核半径内部包括涡核半径位置,切向速度的轴向剖面均呈现一定的速度剪切特性,即最大切向速度发生在近地面高度,该现象与大气边界层风剖面存在较大差异。涡核半径外部,切向速度剖面与大气边界层风剖面较为接近。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F020.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F021.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F022.jpg

    (c) S=0.768

    图7 平均切向速度沿轴向的分布

    Fig.7 Normalized mean tangential velocity as a function of axial distance

    图8所示为径向速度沿径向的分布情况。涡流比S=0.235工况下,径向速度全为负,且沿径向变化较小,说明龙卷风气流全部向涡核中心汇集。结合图9,随着高度的增加,径向速度先增大后减小,最大径向速度发生在近地面,达到0.5Utmax。涡流比S=0.546工况下,近地面高度的径向速度沿径向先增大后减小,较高高度处,径向速度出现正值,说明龙卷风气流在较高高度处出现向外流的现象;沿高度方向,如图9(b)所示,涡核半径处径向速度先沿负向增大至最大后沿正向增至最大。涡流比S=0.768条件下,径向速度的分布与S=0.546工况类似,但涡核中心附近径向速度减小。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F024.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F025.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F026.jpg

    (c) S=0.768

    图8 平均径向速度沿径向分布

    Fig.8 Normalized mean radial velocity as a function of radial distance

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F028.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F029.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F030.jpg

    c) S=0.768

    图9 平均径向速度沿轴向分布

    Fig.9 Normalized mean radial velocity as a function of axial distance

    图10所示为平均轴向速度沿径向的分布。涡流比S=0.235条件下,轴向速度在涡核中心附近出现最大值,随着与涡核中心的距离加大,轴向速度逐渐减小。且从图11(a)可发现,轴向速度沿轴向在涡核中心附近先增大后减小,远离涡核中心处,轴向速度较小。涡流比S=0.546条件下,轴向速度在涡核中心附近出现负值,说明龙卷风气流出现向下的流动,沿着径向,不同高度处的轴向速度在0.5Rmax附近出现极大值。在S=0.768工况下,近地面高度(h=0.25hmax)和涡核中心附近(r=0.25Rmax),轴向速度接近于零。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F032.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F033.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F034.jpg

    (c) S=0.768

    图10 平均轴向速度沿径向分布

    Fig.10 Normalized mean axial velocity as a function of radial distance

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F036.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F037.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F038.jpg

    (c) S=0.768

    图11 平均轴向速度沿轴向分布

    Fig.11 Normalized mean axial velocity as a function of axial distance

    龙卷风涡核中心极强的负压是导致建筑结构破坏的重要原因之一。图12所示为不同涡流比条件下气压降沿径向的分布。在S=0.235工况下,涡核中心出现负压极值。在S=0.546工况下,负压在涡核中心附近未出现明显的极值。涡流比S=0.546工况相比S=0.235工况,涡核中心气压降有较大幅度增大。涡流比S=0.768工况相比S=0.546工况,涡核中心气压降减小。在S=0.768工况下,负压在涡核中心两侧分别出现极值,说明龙卷风的单涡结构可能发生破碎,逐渐发展成双涡核结构。

    图12
                            不同高度平面压力径向分布

    图12 不同高度平面压力径向分布

    Fig.12 Pressure deficit as a function of radial distance

    涡核半径是表述龙卷风尺寸的一个重要参数,图13所示为涡核半径随涡流比的改变。可以发现,涡核半径在不同高度平面均随涡流比的增大而增大。龙卷风的涡核半径随着高度的增高而增大,但在不同涡流比条件下的增大趋势不同。

    图13
                            涡核半径随涡流比的改变

    图13 涡核半径随涡流比的改变

    Fig.13 Vortex core radius as a function of swirl ratio

  • 3.3 流场脉动特性

    龙卷风气流在涡核内部表现出较强的脉动特性。图14所示为切向速度标准差沿径向的分布。涡流比S=0.235条件下,涡核中心的切向速度标准差最大,近地面高度的切向速度标准差大于较高高度处。涡流比S=0.546和S=0.768条件下,切向速度标准差减小,极值点偏离了涡核中心。图15所示为用当地平均切向速度无量纲化后的切向速度标准差沿轴向分布。无量纲切向速度标准差随着远离涡核中心而逐渐减小。随着涡流比的提高,切向速度脉动成分最大的点出现在最大切向速度发生的高度附近。

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F042.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F043.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F044.jpg

    (c) S=0.768

    图14 切向速度标准差沿径向分布

    Fig.14 Standard deviation of tangential velocity as a function of radial distance

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F046.jpg

    (a) S=0.235

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F047.jpg

    (b) S=0.546

    html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F048.jpg

    (c) S=0.768

    图15 无量纲化切向速度标准差沿轴向分布

    Fig.15 Normalized standard deviation of tangential velocity as a function of axial distance

    图16所示为用负压极值进行无量纲处理的压力降标准差沿径向的分布。涡流比S=0.235条件下,压力降标准差在涡核中心出现极大值,说明涡核中心附近压力脉动特性显著。随着涡流比的增大,涡核压力降脉动特性减弱,但在涡核中心两侧出现新的极值。在涡流比S=0.768条件下,涡核中心两侧出现明显的极大值。说明,随着涡流比的增大,龙卷风单旋涡破碎,逐渐演变为双涡形态。

    图16
                            压力降标准差径向分布

    图16 压力降标准差径向分布

    Fig.16 Normalized standard deviation of pressure deficit as a function of radial distance

  • 4 结论

    以同济大学龙卷风模拟器为原型,运用计算流体动力学方法构建了龙卷风风场的数值计算模型。通过与物理试验结果和实测结果的对比,验证了数值模拟的可行性。以涡流比为重点研究参数,探究了三个不同涡流比条件下的龙卷风风场结构。主要结论如下:

    (1)在涡核半径内,平均切向速度随着离涡核中心距离的增加逐渐增大,在涡核半径外,平均切向速度随着距离的增加而减小。随着涡流比的增大,龙卷风风场内的最大平均切向速度变大;靠近涡核中心附近的平均切向速度轴向分布出现了明显的速度剪切现象。

    (2)随着涡流比的增大,4倍涡核半径范围内的平均径向速度出现了正值,平均轴向速度均出现负值;即4倍涡核半径范围内,沿径向向内流动、沿轴向向上流动的龙卷风气流发生改变,出现了沿径向向外、沿轴向向下流动的现象。

    (3)龙卷风气流在涡核中心出现明显的气压降,随着涡流比增大,涡核中心负压极值先逐渐消失,而后在涡核中心两侧出现新的负压极值;涡核半径随着离地面高度的增大而逐渐变大,符合真实龙卷风旋涡的形态。

    (4)龙卷风涡核内部的速度和风压均表现出了强烈脉动特性。涡核中心附近切向速度脉动成分极大。随着涡流比增加,切向风速标准差极值点偏离原涡核中心。

    (5)随着龙卷风涡流比的增大,龙卷风单涡核结构发生破碎,逐渐发展为双涡核结构。

  • 参考文献

    • 1

      Cao S, Wang J. Statistical summary and case studies of strong wind damage in China [J]. Journal of Disaster Research, 2013, 8(6):1096-1102.

    • 2

      Xue M, Zhao K, Wang M, et al. Recent significant tornadoes in China [J]. Advances in Atmospheric Sciences, 2016, 33(11):1209-1217.

    • 3

      Alexander Curtis R., Wurman Joshua . The 30 May 1998 Spencer, South Dakota, Storm. Part I: The Structural Evolution and Environment of the Tornadoes. Monthly Weather Review, 2010,133 (133):72-97

    • 4

      Le K, Haan F L, Gallus W A, et al. CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements[J].Wind & Structures An International Journal,2008,11 (2):75-96.

    • 5

      Ying S J, Chang C C. Exploratory Model Study of Tornado-Like Vortex Dynamics [J]. Journal of the Atmospheric Sciences, 1970, 27 (1):3-14.

    • 6

      Ward N B. The exploration of certain features of tornado dynamics using a laboratory model [J]. Journal of the Atmospheric Sciences, 1972, 29 (6): 1194-1204.

    • 7

      Church C R. Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation [J]. J.atmos.sci, 1979, 36(36):1755-1776.

    • 8

      Lund D E, Snow J T. Laser Doppler velocimeter measurements in tornado like vortices [J]. Washington Dc American Geophysical Union Geophysical Monograph, 1993, 79.

    • 9

      Mishra A R, James D L, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part A: Flow field characterization [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1243-1257.

    • 10

      Mishra A R, James D L, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1258-1273.

    • 11

      Cleland J D. Laboratory measurements of velocity profiles in simulated tornado-like vortices [J]. Journal of Undergraduate Research in Physics, 2002(1).

    • 12

      Jr F L H, Sarkar P P, Gallus W A. Design, construction and performance of a large tornado simulator for wind engineering applications [J]. Engineering Structures, 2008, 30 (4): 1146-1159.

    • 13

      Hangan H, Refan M, Jubayer C, et al. Novel techniques in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 171:12-33.

    • 14

      王锦, 周强, 曹曙阳,等. 龙卷风风场的试验模拟[J]. 同济大学学报(自然科学版), 2014, 42(11):1654-1659.

      WANG Jin, ZHOU Qiang, CAO Shuyang, CAO Jinxin. Physical Study on Tornado-like Flow Based on Tornado Vortex Simulator[J]. JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 2014, 42(11):1654-1659.

    • 15

      顾明. 土木结构抗风研究进展及基础科学问题—建筑、环境与土木工程Ⅱ[M]. 北京: 科学出版社, 2006.

      Gu Ming. The research process and basic scientific issues about civil structure-architectural, environmental & civil engineering Ⅱ [M]. Beijing: Science Press, 2006.

    • 16

      罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2):21-29.

      LUO Kai-wen, YANG Yi, XIE Zhuang-ning. A COMPARATIVE STUDY ON THE SIMULATION OF NEUTRAL ATMOSPHERIC BOUNDARY LAYER BASED ON THE k-ε TURBULENCE MODEL[J]. ENGINEERING MWECHANIUCS, 2018, 35(2):21-29.

    • 17

      Diamond Chris J., Wilkins Eugene M. Translation Effects on Simulated Tornadoes. Journal of Atmospheric Sciences, 1984,41(17):2574-2580.

    • 18

      Lewellen W. S., Lewellen D. C., Sykes R. I. Large-Eddy Simulation of a Tornado's Interaction with the Surface. Journal of the Atmospheric Sciences, 1997, 54(5): 581-605

    • 19

      Lewellen D. C., Lewellen W. S., Xia J. The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface. Journal of the Atmospheric Sciences, 2000, 57(4): 527-544.

    • 20

      Ishihara T, Oh S, Tokuyama Y. Numerical study on flow fields of tornado-like vortices using the LES turbulence model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):239-248.

    • 21

      李雪. 基于数值模拟系统的台风涡结构模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009.

      LI Yue. Simulation of Vortex Structures of Typhoons with Numerical Simulation[D]. Harbin: Harbin Institute of Technology.

    • 22

      徐枫, 肖仪清, 李波, 等. 龙卷风风场特性的CFD数值模拟[J]. 空气动力学学报, 2013, 31(3):350-356.

      XU Feng, XIAO Yi-qing, LI Bo, OU Jin-ping . CFD numerical simulation of tornado wind field characteristics. ACTA Aerodynamica Sinica, 2013, 31(3): 350-356.

    • 23

      Wang J, Cao S, Pang W, et al. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices[J]. Boundary-Layer Meteorology, 2017, 162(2):319-339.

    • 24

      Tang Z, Feng C, Wu L, et al. Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator[J]. Boundary-Layer Meteorology, 2017(9):1-24.

    • 25

      Karstens C D, Samaras T M, Lee B D, et al. Near-Ground Pressure and Wind Measurements in Tornadoes[J]. Monthly Weather Review, 2010, 138(7): 2570-2588

王蒙恩

机 构:同济大学 土木工程学院,上海 200092

Affiliation:College of Civil Engineering, Tongji University, Shanghai 200092, China

角 色:第一作者

Role:First author

作者简介:王蒙恩(1994—),男,博士生,主要研究方向为桥梁与结构抗风. E-mail:

曹曙阳

机 构:同济大学 土木工程防灾国家重点实验室,上海 200092

Affiliation:State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

角 色:通讯作者

Role:Corresponding author

邮 箱:shuyang@tongji.edu.cn

作者简介:曹曙阳(1966—),男,教授,博士生导师,工学博士,主要研究方向为桥梁与结构抗风. E-mail: shuyang@tongji.edu.cn

操金鑫

机 构:同济大学 土木工程防灾国家重点实验室,上海 200092

Affiliation:State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F002.jpg
html/jtuns/19050/media/a974c416-d061-4c68-8ec9-32385d3100de-image002.png
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F005.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F006.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F008.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F009.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F010.jpg
边界名速度边界条件压力边界条件
inlet定值零梯度
upper outlet零梯度定值0
lower outletoutletInlet零梯度
其他边界no-slip wallno-slip wall
算例SRe

Utmax

(m/s)

Rmax

(m)

hmax

(m)

10.2351.82×1053.0740.0230.058
20.5461.82×1054.9170.0430.028
30.7681.82×1055.1200.0700.031
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F011.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F013.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F014.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F016.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F017.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F018.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F020.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F021.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F022.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F024.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F025.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F026.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F028.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F029.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F030.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F032.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F033.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F034.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F036.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F037.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F038.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F039.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F040.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F042.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F043.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F044.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F046.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F047.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F048.jpg
html/jtuns/19050/alternativeImage/a974c416-d061-4c68-8ec9-32385d3100de-F049.jpg

图1 同济大学龙卷风模拟器 -- (a) 示意图

Fig.1 Tornado vortex simulator in Tongji University

图1 同济大学龙卷风模拟器 -- (b) 实体图

Fig.1 Tornado vortex simulator in Tongji University

图2 数值计算模型 -- (a) 剖面图

Fig.2 Numerical simulation model

图2 数值计算模型 -- (b) 三维图

Fig.2 Numerical simulation model

图3 数值计算模型网格 -- (a) 三维图

Fig.3 Mesh of numerical simulation model

图3 数值计算模型网格 -- (b) 主视图

Fig.3 Mesh of numerical simulation model

图3 数值计算模型网格 -- (c) 底视图

Fig.3 Mesh of numerical simulation model

表1 边界条件设置汇总

Tab.1 Setup of boundary conditions

表2 算例参数汇总

Tab.2 Numerical simulation cases

图4 平均切向速度沿径向分布的对比

Fig.4 Comparison of normalized mean tangential velocity

图5 压力降沿径向分布的对比 -- (a) S=0.235

Fig.5 Comparison of normalized mean pressure deficit -- (a) S=0.235

图5 压力降沿径向分布的对比 -- (b) S=0.546

Fig.5 Comparison of normalized mean pressure deficit -- (b) S=0.546

图6 平均切向速度沿径向的分布 -- (a) S=0.235

Fig.6 Normalized mean tangential velocity as a function of radial distance -- (a) S=0.235

图6 平均切向速度沿径向的分布 -- (b) S=0.546

Fig.6 Normalized mean tangential velocity as a function of radial distance -- (b) S=0.546

图6 平均切向速度沿径向的分布 -- (c) S=0.768

Fig.6 Normalized mean tangential velocity as a function of radial distance -- (c) S=0.768

图7 平均切向速度沿轴向的分布 -- (a) S=0.235

Fig.7 Normalized mean tangential velocity as a function of axial distance -- (a) S=0.235

图7 平均切向速度沿轴向的分布 -- (b) S=0.546

Fig.7 Normalized mean tangential velocity as a function of axial distance -- (b) S=0.546

图7 平均切向速度沿轴向的分布 -- (c) S=0.768

Fig.7 Normalized mean tangential velocity as a function of axial distance -- (c) S=0.768

图8 平均径向速度沿径向分布 -- (a) S=0.235

Fig.8 Normalized mean radial velocity as a function of radial distance -- (a) S=0.235

图8 平均径向速度沿径向分布 -- (b) S=0.546

Fig.8 Normalized mean radial velocity as a function of radial distance -- (b) S=0.546

图8 平均径向速度沿径向分布 -- (c) S=0.768

Fig.8 Normalized mean radial velocity as a function of radial distance -- (c) S=0.768

图9 平均径向速度沿轴向分布 -- (a) S=0.235

Fig.9 Normalized mean radial velocity as a function of axial distance -- (a) S=0.235

图9 平均径向速度沿轴向分布 -- (b) S=0.546

Fig.9 Normalized mean radial velocity as a function of axial distance -- (b) S=0.546

图9 平均径向速度沿轴向分布 -- c) S=0.768

Fig.9 Normalized mean radial velocity as a function of axial distance -- c) S=0.768

图10 平均轴向速度沿径向分布 -- (a) S=0.235

Fig.10 Normalized mean axial velocity as a function of radial distance -- (a) S=0.235

图10 平均轴向速度沿径向分布 -- (b) S=0.546

Fig.10 Normalized mean axial velocity as a function of radial distance -- (b) S=0.546

图10 平均轴向速度沿径向分布 -- (c) S=0.768

Fig.10 Normalized mean axial velocity as a function of radial distance -- (c) S=0.768

图11 平均轴向速度沿轴向分布 -- (a) S=0.235

Fig.11 Normalized mean axial velocity as a function of axial distance -- (a) S=0.235

图11 平均轴向速度沿轴向分布 -- (b) S=0.546

Fig.11 Normalized mean axial velocity as a function of axial distance -- (b) S=0.546

图11 平均轴向速度沿轴向分布 -- (c) S=0.768

Fig.11 Normalized mean axial velocity as a function of axial distance -- (c) S=0.768

图12 不同高度平面压力径向分布

Fig.12 Pressure deficit as a function of radial distance

图13 涡核半径随涡流比的改变

Fig.13 Vortex core radius as a function of swirl ratio

图14 切向速度标准差沿径向分布 -- (a) S=0.235

Fig.14 Standard deviation of tangential velocity as a function of radial distance -- (a) S=0.235

图14 切向速度标准差沿径向分布 -- (b) S=0.546

Fig.14 Standard deviation of tangential velocity as a function of radial distance -- (b) S=0.546

图14 切向速度标准差沿径向分布 -- (c) S=0.768

Fig.14 Standard deviation of tangential velocity as a function of radial distance -- (c) S=0.768

图15 无量纲化切向速度标准差沿轴向分布 -- (a) S=0.235

Fig.15 Normalized standard deviation of tangential velocity as a function of axial distance -- (a) S=0.235

图15 无量纲化切向速度标准差沿轴向分布 -- (b) S=0.546

Fig.15 Normalized standard deviation of tangential velocity as a function of axial distance -- (b) S=0.546

图15 无量纲化切向速度标准差沿轴向分布 -- (c) S=0.768

Fig.15 Normalized standard deviation of tangential velocity as a function of axial distance -- (c) S=0.768

图16 压力降标准差径向分布

Fig.16 Normalized standard deviation of pressure deficit as a function of radial distance

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

其中,Utmax为流场中最大切向速度;hmax为最大切向速度发生平面的高度;RmaxUtmax发生处距离模拟器中心距离,即hmax高度处的涡核半径。

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献

    • 1

      Cao S, Wang J. Statistical summary and case studies of strong wind damage in China [J]. Journal of Disaster Research, 2013, 8(6):1096-1102.

    • 2

      Xue M, Zhao K, Wang M, et al. Recent significant tornadoes in China [J]. Advances in Atmospheric Sciences, 2016, 33(11):1209-1217.

    • 3

      Alexander Curtis R., Wurman Joshua . The 30 May 1998 Spencer, South Dakota, Storm. Part I: The Structural Evolution and Environment of the Tornadoes. Monthly Weather Review, 2010,133 (133):72-97

    • 4

      Le K, Haan F L, Gallus W A, et al. CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements[J].Wind & Structures An International Journal,2008,11 (2):75-96.

    • 5

      Ying S J, Chang C C. Exploratory Model Study of Tornado-Like Vortex Dynamics [J]. Journal of the Atmospheric Sciences, 1970, 27 (1):3-14.

    • 6

      Ward N B. The exploration of certain features of tornado dynamics using a laboratory model [J]. Journal of the Atmospheric Sciences, 1972, 29 (6): 1194-1204.

    • 7

      Church C R. Characteristics of Tornado-Like Vortices as a Function of Swirl Ratio: A Laboratory Investigation [J]. J.atmos.sci, 1979, 36(36):1755-1776.

    • 8

      Lund D E, Snow J T. Laser Doppler velocimeter measurements in tornado like vortices [J]. Washington Dc American Geophysical Union Geophysical Monograph, 1993, 79.

    • 9

      Mishra A R, James D L, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part A: Flow field characterization [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1243-1257.

    • 10

      Mishra A R, James D L, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part B: Wind loading on a cubical model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(8):1258-1273.

    • 11

      Cleland J D. Laboratory measurements of velocity profiles in simulated tornado-like vortices [J]. Journal of Undergraduate Research in Physics, 2002(1).

    • 12

      Jr F L H, Sarkar P P, Gallus W A. Design, construction and performance of a large tornado simulator for wind engineering applications [J]. Engineering Structures, 2008, 30 (4): 1146-1159.

    • 13

      Hangan H, Refan M, Jubayer C, et al. Novel techniques in wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2017, 171:12-33.

    • 14

      王锦, 周强, 曹曙阳,等. 龙卷风风场的试验模拟[J]. 同济大学学报(自然科学版), 2014, 42(11):1654-1659.

      WANG Jin, ZHOU Qiang, CAO Shuyang, CAO Jinxin. Physical Study on Tornado-like Flow Based on Tornado Vortex Simulator[J]. JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE), 2014, 42(11):1654-1659.

    • 15

      顾明. 土木结构抗风研究进展及基础科学问题—建筑、环境与土木工程Ⅱ[M]. 北京: 科学出版社, 2006.

      Gu Ming. The research process and basic scientific issues about civil structure-architectural, environmental & civil engineering Ⅱ [M]. Beijing: Science Press, 2006.

    • 16

      罗凯文, 杨易, 谢壮宁. 基于k-ε模型模拟平衡态大气边界层的比较研究[J]. 工程力学, 2018, 35(2):21-29.

      LUO Kai-wen, YANG Yi, XIE Zhuang-ning. A COMPARATIVE STUDY ON THE SIMULATION OF NEUTRAL ATMOSPHERIC BOUNDARY LAYER BASED ON THE k-ε TURBULENCE MODEL[J]. ENGINEERING MWECHANIUCS, 2018, 35(2):21-29.

    • 17

      Diamond Chris J., Wilkins Eugene M. Translation Effects on Simulated Tornadoes. Journal of Atmospheric Sciences, 1984,41(17):2574-2580.

    • 18

      Lewellen W. S., Lewellen D. C., Sykes R. I. Large-Eddy Simulation of a Tornado's Interaction with the Surface. Journal of the Atmospheric Sciences, 1997, 54(5): 581-605

    • 19

      Lewellen D. C., Lewellen W. S., Xia J. The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface. Journal of the Atmospheric Sciences, 2000, 57(4): 527-544.

    • 20

      Ishihara T, Oh S, Tokuyama Y. Numerical study on flow fields of tornado-like vortices using the LES turbulence model [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):239-248.

    • 21

      李雪. 基于数值模拟系统的台风涡结构模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009.

      LI Yue. Simulation of Vortex Structures of Typhoons with Numerical Simulation[D]. Harbin: Harbin Institute of Technology.

    • 22

      徐枫, 肖仪清, 李波, 等. 龙卷风风场特性的CFD数值模拟[J]. 空气动力学学报, 2013, 31(3):350-356.

      XU Feng, XIAO Yi-qing, LI Bo, OU Jin-ping . CFD numerical simulation of tornado wind field characteristics. ACTA Aerodynamica Sinica, 2013, 31(3): 350-356.

    • 23

      Wang J, Cao S, Pang W, et al. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices[J]. Boundary-Layer Meteorology, 2017, 162(2):319-339.

    • 24

      Tang Z, Feng C, Wu L, et al. Characteristics of Tornado-Like Vortices Simulated in a Large-Scale Ward-Type Simulator[J]. Boundary-Layer Meteorology, 2017(9):1-24.

    • 25

      Karstens C D, Samaras T M, Lee B D, et al. Near-Ground Pressure and Wind Measurements in Tornadoes[J]. Monthly Weather Review, 2010, 138(7): 2570-2588