摘要
在定容燃烧弹内模拟一款重型柴油机喷油时刻的缸内热力学状态,基于高速摄影开展了不同海拔高度下柴油燃烧的可视化试验研究。结果表明,海拔高度对着火延迟、着火距离、升举长度、卷吸空气比率以及火焰亮度等都有显著的影响,海拔从0 m升高到4 500 m时,着火延迟由0.67 ms延长至1.04 ms,着火距离由22.09 mm增大到37.03 mm;升举长度由23.1 mm增大到34.5 mm;卷吸空气比率由12.0 %增大到14.0 %;空间积分火焰亮度峰值减小,且空间积分火焰亮度峰值的变化幅度和卷吸空气比率的变化幅度都随海拔升高而减小;时间积分火焰亮度减小,碳烟生成总量减少。
柴油机具有输出扭矩大、燃油消耗低、可靠性高等优点,因而广泛应用于交通运输、军事装备等领域,但是柴油机在高海拔地区运行时会出现动力性和经济性下降、热负荷增大等问
这些研究大多集中于柴油机台架试验,对不同海拔条件下柴油机燃烧过程的可视化研究较少。柴油机结构复杂,难以布置光学视窗,而且柴油机工作循环变大,不易精确控制边界条件。因此,在实际柴油机上实现对喷雾燃烧过程的直接观测和分析都十分困难。为此,以美国Sandia国家实验室预混燃烧加热式定容燃烧弹为代表的光学诊断系统是目前较为成熟、适用工况范围较广的内燃机喷雾燃烧模拟装置,而且De
笔者基于已完成的不同海拔高度对柴油喷雾和油气卷吸过程影响的研

图1 燃烧可视化试验台架示意图
Fig.1 Schematic of optical combustion diagnose system
定容燃烧弹用于模拟实际柴油机喷油时刻的缸内热力学状态,并提供光学诊断通道。采用预混合燃烧加热的方式在定容燃烧弹内建立高温、高压的试验环境,

图2 预混燃烧加热式定容燃烧弹的工作原理
Fig.2 Principle of premixed combustion heatedconstant volume combustion bomb
电控共轨喷油系统通过控制油泵来保持共轨管内的油压恒定。使用BOSCH CRIN2电流驱动型电控单孔喷油器,喷孔位于喷油器轴线上,用显微法实测喷孔出口直径为0.32 mm。喷油持续期设定为2.0 ms,确保可视化试验过程中喷雾和火焰能充分发展。
本文采用减光直拍成像技术实现柴油燃烧过程的可视化。
柴油燃烧过程中火焰发出的亮度主要有化学发光和碳烟炽光两种,而且后者的亮度要远高于前

图3 减光直拍成像技术的光路示意图
Fig.3 Optical arrangement with high speed imaging technique
本文根据一款低压缩比增压中冷重型柴油机确定试验条件。基于该机型在高原环境模拟试验系统上开展的台架试验,选取海拔0 m(平原)、3 000 m和4 500 m条件下该机型在标定工况下喷油时刻的缸内压力和温度作为定容燃烧弹内的热力学状态,具体的试验条件见

图4 不同海拔高度对自然火焰发展形态的影响
Fig.4 Effects of altitude on flame propagation
喷油开始后,在喷射动量的驱动下柴油喷雾向下游贯穿,越来越多的环境空气被卷吸进入油束内部,混合气当量比沿着喷雾轴向逐渐减
确定着火时刻的方法有很多,比如通过燃烧压力或燃烧温度上升、直接的火焰亮度或火焰的化学发光

图5 不同海拔高度对着火延迟和着火距离的影响
Fig.5 Effects of altitude on ignition delay and distance
根据

图6 不同海拔高度对升举长度和卷吸空气比率的影响
Fig.6 Effects of altitude on lift-off length and stoichiometric air ratio
为了定量分析升举火焰上游区域内的油气混合质量,文献[
(1) |
式中:为卷吸空气比率,%;为当量比;L为火焰的升举长度; 为喷雾特征尺寸;为化学计量空燃比。详细的计算过程可参考文献[
从
此外,从
如前所述,柴油燃烧时的火焰亮度主要来源于化学发光和碳烟炽光,而本文基于减光直拍成像技术获得的火焰图像中只保留了碳烟颗粒热辐射的强烈炽光,因此可以用图像的火焰亮度来表征碳烟的生成特性。
将火焰图像中所有像素点的亮度值进行空间积分,得到空间积分火焰亮度,可以直观地揭示火焰发展过程中碳烟的瞬时生成

图7 不同海拔高度对空间积分火焰亮度的影响
Fig.7 Effects of altitude on spatial integrated natural luminosity
此外,从
将空间积分火焰亮度累积计算得到时间积分火焰亮度,用以更直观地定量比较在整个火焰发光持续期内的碳烟生成总

图8 不同海拔高度对时间积分火焰亮度的影响
Fig.8 Effects of altitude on time integrated natural luminosity
但是需要注意的是,海拔变化时,火焰亮度表征的碳烟生成量水平并不等同于实际柴油机最终的碳烟排放水平。余林啸
(1) 随海拔升高,着火延迟延长,着火距离增大。海拔高度从0 m升高到4 500 m,着火延迟从0.67 ms延长到1.04 ms,着火距离从22.09 mm增大到37.03 mm,表明海拔高度对着火过程有明显的抑制效果。
(2) 火焰的升举长度和火焰升举长度位置处的卷吸空气比率都随海拔升高而增大。海拔0 m、 3 000 m和4 500 m条件下的升举长度分别为23.1 mm、29.1 mm和34.5 mm,升举长度增大使得升举火焰上游区域内为油气混合预留的空间范围随海拔升高而扩大。因此,随海拔升高而变差的油气混合质量会由于升举长度的增大而得到补偿,最终使得柴油喷雾在升举长度位置处的卷吸空气总量随海拔升高而增加,计算得到海拔高度从0 m升高到4 500 m,卷吸空气比率从12.0 %增大到14.0 %。
(3) 海拔从0 m升高到3 000 m,卷吸空气比率增幅和空间积分火焰亮度峰值降幅分别为12.5 %和26.4 %;而海拔从3 000 m升高到4 500 m,卷吸空气比率增幅和空间积分火焰亮度峰值降幅分别减小为3.7 %和9.6 %。可见,卷吸空气比率和空间积分火焰亮度峰值的变化幅度都随海拔升高而减小,揭示了升举火焰上游的卷吸特性和碳烟的生成特性密切相关。
(4) 随海拔升高,定容燃烧弹内火焰亮度表征的柴油燃烧的碳烟生成总量减小。这与实际柴油机的碳烟排放量随海拔升高而增大的趋势相反。这主要归因于燃烧后期碳烟的氧化速率明显减小,因此,高海拔条件下实际柴油机在排气门开启后,缸内生成的碳烟没有被有效氧化而是直接排出气缸,造成碳烟排放量增大。
参考文献
刘瑞林, 刘宏威, 秦德. 涡轮增压柴油机高海拔(低气压)性能试验研究[J]. 内燃机学报, 2003, 21(3):213. [百度学术]
LIU Ruilin, LIU Hongwei, QIN De. An experimental study on performance of turbocharged diesel engines at high altitude (low air pressure) [J]. Transactions of CSICE, 2003, 21(3):213. [百度学术]
BERMÚDEZ V, SERRANO J R, PIQUERAS P, et al. Analysis of the role of altitude on diesel engine performance and emissions using an atmosphere simulator [J]. International Journal of Engine Research, 2017, 18(1/2): 105. [百度学术]
周广猛, 刘瑞林, 董素荣, 等. 高压共轨柴油机高海拔燃烧温度特性 [J]. 内燃机学报, 2016, 34(4):296. [百度学术]
ZHOU Guangmeng, LIU Ruilin, DONG Surong, et al. Combustion temperature characteristics of a common rail diesel engine under high altitude conditions [J]. Transactions of CSICE, 2016, 34(4):296. [百度学术]
WANG X, GE Y, YU L, et al. Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude [J]. Fuel, 2013, 107(2): 852. [百度学术]
中华人民共和国环境保护部. 重型柴油车污染物排放限值及测量方法(中国第六阶段)[EB/OL]. [2019-05-01]. http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqydywrwpfbz/201612/t20161223_369476.shtml. [百度学术]
Ministry of Ecology and Environment of the People’s Republic of China. Limits and measurement methods for emissions from diesel fuelled heavy-duty vehicles (CHINA VI) [EB/OL]. [2019-05-01]. http://kjs.mee.gov.cn/hjbhbz/bzwb/dqhjbh/dqydywrwpfbz/201612/t20161223_369476.shtml. [百度学术]
BENJUMEA P, AGUDELO J, AGUDELO A. Effect of altitude and palm oil biodiesel fuelling on the performance and combustion characteristics of a HSDI diesel engine [J]. Fuel, 2009, 88(4): 725. [百度学术]
WANG X, GE Y, YU L, et al. Effects of altitude on the thermal efficiency of a heavy-duty diesel engine [J]. Energy, 2013, 59(1): 543. [百度学术]
SZEDLMAYER M, KWEON C B M. Effect of altitude conditions on combustion and performance of a multi-cylinder turbocharged direct-injection diesel engine [R]. Detroit: SAE, 2016. [百度学术]
YU L, GE Y, TAN J, et al. Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes [J]. Fuel, 2014, 115(1): 220. [百度学术]
LI H, ZHANG G, ZHANG H, et al. Equivalent matching model of a regulated two-stage turbocharging system for the plateau adaptability [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2016, 230(12): 1654. [百度学术]
CARLUCCI A P, FICARELLA A, LAFORGIA D, et al. Supercharging system behavior for high altitude operation of an aircraft 2-stroke diesel engine [J]. Energy Conversion and Management, 2015, 101(1): 470. [百度学术]
ZHU Z, ZHANG F, LI C, et al. Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau [J]. Applied Energy, 2015, 157(1): 789. [百度学术]
DEC J E. A conceptual model of DI diesel combustion based on laser-sheet imaging [R]. Detroit: SAE, 2007. [百度学术]
NABER J D, SIEBERS D L. Effects of gas density and vaporization on penetration and dispersion of diesel sprays [R]. Detroit: SAE, 1996. [百度学术]
PEI Y J, DAVIS M J, PICKETT L M, et al. Engine combustion network (ECN): global sensitivity analysis of spray a for different combustion vessels [J]. Combustion and Flame, 2015, 162(6): 2337. [百度学术]
WANG C, LOU D, TAN P, et al. Experimental study on diesel spray characteristics at different altitudes [R]. Detroit: SAE, 2018. [百度学术]
GAYDON A. The spectroscopy of flames [M]. New York: Halsted Press, 2012. [百度学术]
DEC J E, ESPEY C. Chemiluminescence imaging of autoignition in a DI diesel engine [R]. Detroit: SAE, 1998. [百度学术]
SIEBERS D L, HIGGINS B. Flame lift-off on direct-injection diesel sprays under quiescent conditions [R]. Detroit: SAE, 2001. [百度学术]
BARDI M, PAYRI R, MALBEC L M, et al. Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels [J]. Atomization & Sprays, 2012, 22(4): 807. [百度学术]
PICKETT L M, SIEBERS D L. Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure [J]. Combustion and Flame, 2004, 138(1): 114. [百度学术]
PETERS N. Turbulent combustion [M]. London: Cambridge University Press, 2000. [百度学术]
胡江涛, 姚春德, 耿培林, 等. 空气和甲烷/空气氛围中喷油压力对柴油燃烧特性的影响 [J]. 内燃机学报, 2017, 35(4):289. [百度学术]
HU Jiangtao, YAO Chunde, GENG Peilin, et al. Effects of injection pressure on combustion characteristics of diesel fuel in air and premixed methane/air mixture atmosphere [J]. Transactions of CSICE, 2017, 35(4):289. [百度学术]
姚春德, 胡江涛, 银增辉, 等. 喷油压力对高压共轨柴油机燃烧影响的可视化研究 [J]. 农业机械学报, 2016, 47(1):355. [百度学术]
YAO Chunde, HU Jiangtao, YIN Zenghui, et al. Visualization on combustion characteristics of common rail diesel engine at different injection pressures [J]. Transactions of The Chinese Society of Agricultural Machinery, 2016, 47(1):355. [百度学术]
余林啸, 葛蕴珊, 谭建伟, 等. 重型柴油机在不同海拔地区的燃烧与排放特性 [J]. 内燃机学报, 2013, 31(6): 507. [百度学术]
YU Linxiao, GE Yunshan, TAN Jianwei, et al. Combustion and emission characteristics of a heavy-duty diesel engine at different altitudes [J]. Transactions of CSICE, 2013, 31(6): 507. [百度学术]
TREE D R, FOSTER D E. Optical measurements of soot particle size, number density , and temperature in a direct injection diesel engine as a function of speed and load [R]. Detroit: SAE, 1994. [百度学术]