摘要
以St16钢管和6061铝合金管为对象,分析了一种新的薄壁管塑性连接方法连接这2种金属薄壁管的可行性。基于Abaqus软件建立了压缩塑性连接仿真模型,设计了薄壁管塑性连接专用模具,通过实验对仿真模型进行了验证。重点讨论了压缩塑性连接过程中管坯的相对自由长度、模具与管坯间隙、芯棒与管坯间隙对成形性的影响规律。结果表明,基于压缩形成褶皱的塑性连接方法适合于异质金属薄壁管的连接;压缩塑性连接的关键技术在于正确设计管坯自由长度、管坯与芯棒、管坯与模具间隙量,使被连接两管在压缩失稳之后的塑性变形量和变形方向协调,确保内外褶皱的波形轮廓接触紧密。对研究的St16/AA6061薄壁管,管坯相对自由长度满足1.250<lg/r0<1.625、模具与管坯外表面间隙为0.07~0.20倍的壁厚、芯棒与管坯间隙为0.07~0.27倍的壁厚是压缩塑性连接成功的前提条件。
《汽车节能与新能源汽车技术路线图》中已明确规定:到2020年乘用车百km油耗必须降至5L,汽车重量比2015年降低10%,到2025年降低20%。而且明确了到2020年600MPa以上级别超高强度钢的应用比例、单车用铝量以及单车用镁量分别达50%、190kg和15kg。到2025年,这3个数据分别为30%、250kg和25k
同种金属板材的连接方法有三大
上述连接方法主要是针对金属板材件的连接,金属管连接
葡萄牙学者Alves
该方法自发明至今主要用于钢管的连接,尚没有在异质金属管连接方面的应用。铝合金由于焊接性差,比钢管更迫切需求这种塑性连接技术,但是铝合金的塑性变形能力比钢差,其连接可行性的工艺参数及几何参数要求更加苛刻。为此,本文以铝合金管/钢管为对象,采用Abaqus软件对压缩塑性连接过程进行仿真,并设计了压缩塑性连接模具对仿真模型进行验证。重点对压缩塑性连接过程、管坯的相对自由长度、模具与管坯间隙、芯棒与管坯间隙对成形性的影响规律进行讨论。
葡萄牙学者Alves

图1 基于压缩失稳的管-管端部塑性连接原理图
Fig. 1 Principle of plastic joining of tube ends based on compression instability
以St16钢管和6061-T6铝合金管为对象,其中钢管为焊接钢管,铝合金管采用挤压加工。钢管外径32mm,壁厚1.5mm。铝合金管外径32mm,壁厚1.0mm。基本力学性能参数由圆弧形单向拉伸试验获得,试样参考GB/T228.1—2010标准取圆弧形试样,其形状及尺寸如

图2 圆弧形单向拉伸试样及其夹具
Fig. 2 Dimensions of arc specimen adopted in uniaxial tension and its clampers

图3 St16钢管和AA6061铝合金管的真应力-应变曲线
Fig. 3 True stress-strain curves of St16 steel andAA6061 aluminum alloy

图4 薄壁管端部压缩塑性连接模具
Fig. 4 Illustration of plastic joining tools for thin-walled tubes by compression
为了对钢-铝管连接变形过程关键参数进行研究,采用Abaqus/Explicit软件对连接变形过程进行数值仿真。

图5 薄壁管压缩塑性连接有限元模型
Fig. 5 Finite element model of compression plastic joining forthin-walled tubes
根据压杆失稳理论,弹性杆在轴向压力作用下发生失稳的临界载荷大小可用欧拉方程(1)来计算。
(1) |
式中,Pcr为临界载荷,E为弹性模量,I为压杆失稳方向的惯性矩,l为压杆的长度。
为了验证有限元模型的准确性,从实验中选取了如

图6 St16/AA6061管压缩塑性连接接头及接头尺寸(l0=20mm, l1=16mm)
Fig. 6 Formed St16 /AA6061 tube jointsmanufactured by compression plastic joining and illustration of main dimensions (l0=20mm and l1=16mm)
图

图7 1.5mm钢和1mm铝管在不同l0和l1下压缩塑性连接仿真接头
Fig. 7 Simulated joints of 1.5mm-St16/ 1mm-AA6061 tubesat different free lengths
为了进一步说明上下管自由长度l0与l1的不合理设计对最终接头形貌的影响,

图8 2组不同上下管自由长度l0-l1下接头的仿真压缩过程
Fig. 8 Simulated compression process of two groups of tubes at different free lengthsin compression

图9 钢/钢、钢/铝薄壁管塑性连接的载荷-位移曲线(l0 = 20mm, l1 = 18mm)
Fig. 9 Force-displacementcurves of St16/St16 and St16/AA6061 thin-walled tubes in plastic joining (l0 =20 mm and l1 =18 mm)
为了分析模具与管坯间隙量对压缩塑性连接性能的影响,以自由长度l0=20mm、l1=18mm、壁厚均为1.5mm的St16钢/AA6061薄壁管为例,模具与管坯外表面的间隙分别取0.1~0.7mm,仿真得到如图

图10 模具间隙为0.1~0.7mm时的仿真接头
Fig. 10 Simulated jointsat a die/tube clearance ofwithin 0.1 to0.7mm
压缩塑性连接过程中芯棒对管内表面有径向支撑和轴向摩擦约束的作用。间隙太小,一方面会导致芯棒与管内表面接触面大从而轴向所需的压缩载荷增加,另一方面压缩连接后芯棒会卡在接头内,导致芯棒取出困难,从而影响连接效率。间隙过大,可能会形成不合格接头。所以芯棒与管内表面的间隙量对压缩塑性连接成形性非常重要。为此,进行了间隙量为0.1~0.6mm情况下的接头轮廓仿真,仿真所得接头轮廓如

图11 芯棒间隙为0.1~0.6mm的仿真接头
Fig. 11 Simulated joints at acore/tube clearance of 0.1 to 0.6mm
以St16钢和6061铝合金薄壁管为对象,对一种新型的薄壁管的塑性连接方法的可行性进行了仿真和试验研究,对压缩塑性连接过程、管坯的自由长度及模具间隙对成形性的影响以及载荷-位移曲线进行了讨论。可得如下主要结论:
(1) 基于压缩形成褶皱的塑性连接方法可用于St16/AA6061薄壁管的端部连接。
(2) 对研究的St16/AA6061薄壁管而言,管坯相对自由长度满足1.250<lg/r0<1.625、模具与管坯外表面间隙为0.07~0.20倍的壁厚、芯棒与管坯间隙为0.07~0.27倍的壁厚是压缩塑性连接成功的前提条件。
(3)压缩塑性连接能形成有效连接的关键技术在于合理设计管坯自由长度、管坯与芯棒、管坯与模具间隙量,使被连接两管在压缩失稳之后的变形协调,包括变形量的匹配和变形方向的协调,也就是内外褶皱的波形轮廓必须紧密贴合在一起。
参考文献
节能与新能源汽车技术路线图战略咨询委员会,中国汽车工程学会。节能与新能源汽车技术路线图[M].北京:机械工业出版社,2016. [百度学术]
Strategic Advisory Committee of Energy Saving and New Energy Vehicle Technology Roadmap, China Society of Automotive Engineering.Technology roadmap for energy saving and new energy vehicles[M]. Beijing: Machine Press, 2016. [百度学术]
高云凯,林典,余海燕,等.镁合金在座椅骨架轻量化设计中的应用[J].同济大学学报(自然科学版),2009,37(7):938. [百度学术]
GAO Yunkai, LIN Dian, YU Haiyan, et al. Application of magnesium alloy in lightweight design of seat frame [J]. Journal of Tongji University (Natural Science), 2009,37 (7): 938. [百度学术]
KEN-ICHIRO Mori , NIELS Bay, LIVAN Fratini, et al. Joining by plastic deformation[J]. CIRP annals - manufacturing technology,2013, 62: 673. [百度学术]
PETER Groche, SIMON Wohletz, MATTHIAS Brenneis, et al. Joining by forming—A review on joint mechanisms, applications and future trends[J]. Journal of Materials Processing Technology,2014, 214:1972. [百度学术]
YU Haiyan, LI Jiaxu,HE Zezhen. Formability assessment of plastic joining by compression instability for thin-walled tubes[J]. International Journal of Advanced Manufacturing Technology, 2018, 97: 3423. [百度学术]
SONSTABO J K, MORIN D, LANGSETH M。Testing and modeling of flow-drill screw connections under quasi-static loadings[J]. Journal of Materials Processing Technology, 2018, 255: 724. [百度学术]
MA Yunwu, LI Yongbing, ZHONG Qin. Friction self-piercing riveting (F-SPR) of dissimilar materials[J]. Procedia Engineering, 2017, 207: 950. [百度学术]
李勇,宋筠毅,程德富,等.汽车车身铝合金连接技术综述[J].汽车工艺师,2018,11 :55. [百度学术]
LI Yong, SONG Junyi, CHENG Defu, et al. Overview of aluminum alloy connection technology for automobile body[J]. Automotive Technologist, 2018,11:55 [百度学术]
YAN Yinfei, SHEN Yifu, LIU Wenming, et al. Friction plug welding of glass fiber reinforced PA6 sheets using a newly designed tool[J]. Journal of Manufacturing Processes, 2019, 45: 614. [百度学术]
CHANG Dongxu,WANG Ping, ZHAO Yingying. Effects of asymmetry and annealing on interfacial microstructure and mechanical properties of Cu/Al laminated composite fabricated by asymmetrical roll bonding[J]. Journal of Alloys and Compounds,2020, 815. DOI: 10.1016/j.jallcom.2019.152453 [百度学术]
SAJU TINU P, GANESH NARAYANAN R. Dieless friction stir extrusion joining of aluminum alloy sheets with a pinless stir tool by controlling tool plunge depth[J]. Journal of Materials Processing Technology, 2020, 276. [百度学术]
EZZINE M C, MADANIK Tarfaoui M, et al. Comparative study of the resistance of bonded, riveted and hybrid assemblies:Experimental and numerical analyses[J]. Structural Engineering and Mechanics, 2019, 70(4): 467. [百度学术]
ALVES L M, SILVA C M A, MARTINS P A F. End-to-end joining of tubes by plastic instability[J]. Journal of Materials Processing Technology, 2014, 214: 1954. [百度学术]
ALVES L M, NIELSENC V, SILVA C M A, et al. Joining end-to-end tubing of dissimilar materials by forming[J]. International Journal of Pressure Vessels and Piping,2017, 149: 24. [百度学术]
ALVES L M, MARTINS P A F. Tube branching by asymmetric compression beading[J]. Journal of Materials Process Technology, 2012, 212: 1200. [百度学术]
ALVES L M,SILVA C M A,MARTINS P A F. Joining of tubes by internal mechanical locking[J]. Journal of Materials Process Technology, 2017, 242: 196. [百度学术]
AFONSO R M, ALVES L M, MARTINS P A F. Joining by boss forming of rods and tubes to sheets[J/OL].https://doi.org/10.1016/j.jajp.2019.100001. [百度学术]