摘要
为了研究拉索模数伸缩缝对一座30°斜交角的三跨混凝土斜交连续梁桥抗震性能的影响,利用理论易损性分析方法分析了脉冲地震动和无脉冲地震动作用下拉索模数伸缩缝的减震效果,并提出了以震后维修费用曲线评价桥梁结构体系抗震性能的方法。结果表明,采用拉索模数伸缩缝后桥墩和支座的易损性均显著降低;速度脉冲效应不会改变结构的破坏模式,但对于采用拉索模数伸缩缝的斜交桥,速度脉冲效应会显著增加支座和桥墩的易损性;无论是脉冲地震动还是无脉冲地震动作用下,采用拉索模数伸缩缝均能有效减小斜交桥的震后维修费用。
斜交桥具有良好的地形和线路适应能力,被广泛应用于城市立交及公路桥梁中。据统计,在我国高等级公路系统中,斜交桥的数量一般可以达到整条线路桥梁总数的40%~50
为了防止梁端位移过大导致落梁,设计人员需要设置足够的支撑宽度,Wu
另外,减隔震装置的抗震性能需要采用系统的量化指标加以衡量,考虑到桥梁抗震中普遍存在的几何参数不确定性、材料不确定性、以及地震动输入的不确定性,斜交桥的抗震性能需采用概率性方法进行评估。理论易损性曲线是目前概率性抗震性能评估中使用最广泛的手段,部分学者也开始用易损性分析手段对斜交桥的抗震性能进行概率性评估:Serdar
基于上述研究背景,本文提出采用拉索模数伸缩缝来限制斜交桥主梁的旋转,并采用理论易损性分析方法对比研究了脉冲地震动和无脉冲地震动作用下,采用拉索模数伸缩缝和普通模数伸缩缝的斜交桥抗震性能,同时提出了用震后维修费用曲线评价结构抗震性能的方法。
袁万城

图1 拉索模数伸缩缝示意
Fig. 1 Cable-sliding modular expansion joint
拉索模数伸缩缝的工作原理如
(1) |
式中:为拉索受拉刚度,=nEA/L,n为拉索根数,E为拉索弹性模量,A为拉索横截面积,L为拉索长度;为拉索自由程;为梁端相对位移或桥台与梁端的相对位移。
Cornell
(2) |
式中:D为构件需求;、为回归系数;为回归残差;为残差平方和。在此基础上提出了理论易损性分析的云图法,由于最小二乘回归线性模型的引入,使得云图法需要满足线性、正态性和同方差性3个基本假
(3) |
Box-Cox变换的定义式
(4) |
式中:为使的各个分量都大于零的系数,即,当时,当时,其中为向上取整函数;系数的取值通过对残差的联合概率密度进行最大似然估计求
(5) |
对
(6) |
考虑到
根据对每个取值下的进行次蒙特卡洛抽样,并采用
(7) |
则构件在第j个损伤状态S(damage state)下的失效概率为
(8) |
以一座三跨混凝土斜交连续梁桥(3×30 m)为背景,该桥斜交角为30°,主梁结构采用4片预制小箱梁拼装,梁高1.6 m,单个箱梁顶板宽2.4 m、厚18 cm,底板宽1 m、厚18 cm,腹板厚18 cm;支座为板式橡胶支座,全为双向滑动;桥墩墩高15 m,直径为2 m,采用C40混凝土,钢筋种类为HRB400,纵向钢筋配筋率1.18%,体积配箍率1.1%;基础为直径1.8 m钻孔灌注桩。桥台与梁端的初始缝隙及伸缩缝自由程均为5 cm,拉索刚度选用70 000 kN·
采用OpenSees程序建立三维有限元模型,如

图2 有限元模型示意
Fig.2 Numerical model of prototype bridge
在地震易损性分析中,不确定性主要来源于材料不确定性、几何不确定性和地震动不确定
对于无脉冲地震动,参考Baker

图3 阻尼比5%时无脉冲地震动的速度反应谱
Fig. 3 Velocity response spectra of no plus-like ground motions (5% damping)
由于我国地震断裂带分布广泛,随着公路建设规模的增加,一些桥梁难免要建设在靠近断层的位置。在先前的地震中,近断层地震动表现出诸多与远场地震动不同的特点,主要包括上盘效应、方向性效应、速度脉冲效应、滑冲效应、竖向加速度效应等,其中最为突出的是速度脉冲效

图4 阻尼比5%时脉冲地震动的速度反应谱
Fig. 4 Velocity response spectra of plus-like ground motions (5% damping)
斜交连续梁桥的震害调查发现,其易损构件主要包括墩柱、支座和桥台,且对于剪跨比较大的长柱,一般均发生弯曲破坏。因此工程需求参数选用桥台被动土压力方向位移、桥台主动土压力方向位移、桥台横向位移、支座橡胶层剪切应变、墩顶漂移率。不同损伤极限状态(即轻微损伤、中等损伤、严重损伤、完全损伤)的能力均值和对数标准差见
如

图5 构件易损性曲线
Fig. 5 Fragility curves of components
由

图6 速度脉冲效应影响
Fig. 6 Influence of velocity pulse
目前常采用体系易损性曲线评价整个桥梁结构的抗震性能,存在结构体系的损伤状态判定困难的问题,无法确定多少构件到达损伤状态才认为结构到达损伤状态。因此,以结构震后直接经济损失(即桥梁震后维修费用)作为评价桥梁抗震性能的依据。震后维修费用的计算方法采用Kameshwar和Padget
(9) |
式中:为全桥维修费用;为构件类型总数,本文只考虑桥台、支座和桥墩3类构件;为同类构件的损伤类型总数;为同类构件同一损伤类型下的构件总数;为根据维修费用均值和变异系数按对数正态分布进行随机抽样的函数。为c类构件在损伤类型d和损伤状态l下采取的修复措施,根据
(10) |
式中:为指示函数;为[0,1]内均匀分布的随机数;为c类构件在损伤类型d和损伤状态l下选取维修方法k的概率。为第e个损伤类型为d的c类构件的损伤状态,通过
(11) |
为狄拉克函数,取值如
(12) |
震后维修费用曲线获取的步骤如下:
步骤1:为各工程需求参数(EDP)建立概率地震需求模型,并计算各构件响应峰值的协方差矩阵。
步骤2:对每一个强度指标取值,都根据协方差矩阵对每个构件的需求进行次抽样,同时对能力端按各损伤状态的均值和标准差也进行次抽样,并判断每次抽样的各构件损伤状态。
步骤3:按
步骤4:循环步骤2、步骤3,得到所有G取值下的震后维修费用,最后绘制震后维修费用曲线(-G曲线),计算得到算例桥的震后维修费用曲线如

图7 震后维修费用曲线
Fig. 7 Curves of seismic repair cost
由图可知,无论是脉冲地震动还是无脉冲地震动作用下,拉索模数伸缩缝的使用均能有效减小全桥的维修费用;全桥维修费用的标准差随地震动强度的增加呈先增大后减小的趋势,这是因为随着地震动强度的增大,各构件损伤程度增加,维修措施中选桥梁重建(维修费用取最大值,即桥梁重建费用)的概率越来越大。
(1)提出采用拉索模数伸缩缝限制斜交桥主梁转动以提高其抗震性能的方法,建立了无脉冲地震动和脉冲地震动作用下斜交桥的构件易损性曲线,发现采用普通模数伸缩缝时最易损构件为支座,而采用拉索模数伸缩缝时最易损构件为桥台,且采用拉索模数伸缩缝后桥墩和支座的易损性均显著降低。
(2)速度脉冲效应不会改变结构的破坏模式,但会增加各构件的损伤概率,对于采用拉索模数伸缩缝的斜交桥,速度脉冲效应会显著增加支座和桥墩的易损性。
(3)针对体系易损性曲线在由构件损伤状态得到体系损伤状态的过程中存在的局限性,提出以体系维修费用曲线评价桥梁抗震性能,无论是脉冲地震动还是无脉冲地震动作用下,拉索模数伸缩缝的使用均能有效减小全桥的维修费用,全桥维修费用的标准差随地震动强度的增加呈先增大后减小的趋势。
作者贡献声明
张鹏辉:文章构思、起草与撰写。
冯睿为:文章修改。
周连绪:文章修改。
郭军军:文章修改。
袁万城:文章审阅、基金支持。
参考文献
卢明奇, 杨庆山, 李英勇. 斜度对斜交桥地震作用下的扭转效应影响 [J]. 哈尔滨工程大学学报, 2012, 33(2): 155. [百度学术]
LU Mingqi, YANG Qingshan, LI Yingyong. Torsion effects of skew angles on skew bridges during earthquakes [J]. Journal of Harbin Engineering University, 2012, 33(2): 155. [百度学术]
YI MENG J, LUI E M. Seismic analysis and assessment of a skew highway bridge [J]. Engineering Structures, 2000, 22(11): 1433. [百度学术]
BUCKLE I, HUBE M, CHEN G, et al. Structural Performance of Bridges in the Offshore Maule Earthquake of 27 February 2010 [J]. Earthquake Spectra, 2012, 28: S533. [百度学术]
WU S, BUCKLE IAN G, ITANI AHMAD M, et al. Experimental studies on seismic response of skew bridges with seat-type abutments. I: Shake table experiments [J]. Journal of Bridge Engineering, 2019, 24(10): 04019096. [百度学术]
WU S, BUCKLE IAN G, ITANI AHMAD M, et al. Experimental studies on seismic response of skew bridges with seat-type abutments. II: Results [J]. Journal of Bridge Engineering, 2019, 24(10): 04019097. [百度学术]
ERöZ M, DESROCHES R. The influence of design parameters on the response of bridges seismically isolated with the Friction Pendulum System (FPS) [J]. Engineering Structures, 2013, 56: 585. [百度学术]
BAYAT M, DANESHJOO F, NISTICò N, et al. Seismic evaluation of isolated skewed bridges using fragility function methodology [J]. Computers and Concrete, 2017, 20(4): 419. [百度学术]
HEDAYATI DEZFULI F, ALAM M S. Effect of different steel-reinforced elastomeric isolators on the seismic fragility of a highway bridge [J]. 2017, 24(2): 1866. [百度学术]
SAIIDI M, RANDALL M, MARAGAKIS E, et al. Seismic restrainer design methods for simply supported bridges [J]. Journal of Bridge Engineering, 2001, 6(5): 307. [百度学术]
王军文, 吴天宇, 闫聚考. 斜交简支梁桥地震碰撞反应参数分析 [J]. 振动与冲击, 2017, 36(3): 209. [百度学术]
WANG Junwen, WU Tianyu, YAN Jukao. Parametrican alysis for seismic pounding responses of a skewed simply-supported girder bridge [J]. Journal of Vibration and Shock, 2017, 36(3): 209. [百度学术]
SEVGILI G, CANER A. Improved seismic response of multisimple-span skewed bridges retrofitted with link slabs [J]. Journal of Bridge Engineering, 2009, 14(6): 452. [百度学术]
SERDAR N, FOLIĆ R. Vulnerability and optimal probabilistic seismic demand model for curved and skewed RC bridges [J]. Engineering Structures, 2018, 176: 411. [百度学术]
YANG C-S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States [J]. Engineering Structures, 2015, 83: 116. [百度学术]
TORBOL M, SHINOZUKA M. Effect of the angle of seismic incidence on the fragility curves of bridges [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2111. [百度学术]
GHOTBI A R. Performance-based seismic assessment of skewed bridges with and without considering soil-foundation interaction effects for various site classes [J]. Earthquake Engineering and Engineering Vibration, 2014, 13(3): 357. [百度学术]
ZAKERI B, PADGETT Jamie E, AMIRI Gholamreza G. Fragility analysis of skewed single-frame concrete box-girder bridges [J]. Journal of Performance of Constructed Facilities, 2014, 28(3): 571. [百度学术]
GAO K, YUAN W C, CAO S, et al. Seismic performance of cable-sliding modular expansion joints subject to near-fault ground motion[J]. Latin American Journal of Solids and Structures, 2015, 12(7): 1397. [百度学术]
GAO K, YUAN W C, DANG X Z. Development and experimental study on cable-sliding modular expansion joints [J]. Structural Engineering and Mechanics, 2017, 61(6): 795. [百度学术]
CORNELL C A, JALAYER F, HAMBURGER RONALD O, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines [J]. Journal of Structural Engineering, 2002, 128(4): 526. [百度学术]
BAKER J W. Probabilistic structural response assessment using vector-valued intensity measures [J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1861. [百度学术]
KARAMLOU A, BOCCHINI P. Quantification of the approximations introduced by assumptions made on marginal distributions of the demand for highway bridge fragility analysis [C]// proceedings of the Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2014). Liverpool: American Society of Civil Engineers (ASCE), 2014: 1321-1330 [百度学术]
BOX G E P, COX D R. An analysis of transformations [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1964, 26(2): 211. [百度学术]
COLLINS S. Prediction techniques for Box–Cox regression models [J]. Journal of Business & Economic Statistics, 1991, 9(3): 267. [百度学术]
MONTEIRO R, DELGADO R, PINHO R. Probabilistic seismic assessment of RC bridges: Part I — Uncertainty Models [J]. Structures, 2016, 5: 258. [百度学术]
PADGETT J E, GHOSH J, DUEñAS-OSORIO L. Effects of liquefiable soil and bridge modelling parameters on the seismic reliability of critical structural components [J]. Structure and Infrastructure Engineering, 2013, 9(1): 59. [百度学术]
PAN Y, AGRAWAL A K, GHOSN M. Seismic fragility of continuous steel highway bridges in new york state [J]. Journal of Bridge Engineering, 2007, 12(6): 689. [百度学术]
CELAREC D, DOLŠEK M. The impact of modelling uncertainties on the seismic performance assessment of reinforced concrete frame buildings [J]. Engineering Structures, 2013, 52: 340. [百度学术]
MEHDIZADEH M. Uncertainty treatment in performance based seismic assessment of typical bridge classes in United States [D]. Florida: University of Central Florida, 2014. [百度学术]
NIELSON B G, DESROCHES R. Analytical seismic fragility curves for typical bridges in the central and southeastern United States [J]. Earthquake Spectra, 2007, 23(3): 615. [百度学术]
BAKER J W, LEE C. An improved algorithm for selecting ground motions to match a conditional spectrum [J]. Journal of Earthquake Engineering, 2018, 22(4): 708. [百度学术]
焦驰宇. 基于性能的大跨斜拉桥地震易损性分析 [D]. 上海: 同济大学, 2008. [百度学术]
JIAO Chiyu. Seismic fragility analysis of long-span cablestayed bridges [D]. Shanghai: Tongji University, 2008. [百度学术]
BOORE D M, STEWART J P, SEYHAN E, et al. NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes [J]. Earthquake Spectra, 2013, 30(3): 1057. [百度学术]
HAMIDI H, KHOSRAVI H, SOLEIMANI R. Fling-step ground motions simulation using theoretical-based Green's function technique for structural analysis [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 232. [百度学术]
张鹏辉, 郭军军, 冯睿为, 等. 连续梁桥的矢量地震动强度指标选取 [J]. 哈尔滨工业大学学报, 2020, 52(3): 68. [百度学术]
ZHANG Penghui, GUO Junjun, FENG Ruiwei, et al. Selection of vector-valued ground motion intensity measures for continuous girder bridges [J]. Journal of Harbin Institute of Technology, 2020, 52(3): 68. [百度学术]
JEON J-S , SHAFIEEZADEH A, LEE D H, et al. Damage assessment of older highway bridges subjected to three-dimensional ground motions: Characterization of shear–axial force interaction on seismic fragilities [J]. Engineering Structures, 2015, 87: 47. [百度学术]
KAMESHWAR S, PADGETT J E. Characterizing and predicting seismic repair costs for bridges [J]. Journal of Bridge Engineering, 2017, 22(11): 04017083. [百度学术]