摘要
次氯酸钠强化二价铁盐混凝能够有效提升含藻污泥的脱水性能与效果。当NaClO质量浓度为1.5~2.0 mg·
水体富营养化导致大规模水华暴发,饮用水源地中的藻类及其衍生物会对饮用水水质安全造成严重威
混凝沉淀法是污泥脱水中常用的调理手
次氯酸钠(NaClO)是水处理中最常用的药剂之一。研究表明其预氧化强化铝盐混凝处理高藻水,藻类的去除率达到了90%以
本研究通过投加不同质量浓度的次氯酸钠强化二价铁盐混凝处理高藻水。重点探究次氯酸钠强化二价铁盐混凝对藻类、水质及含藻污泥脱水性能的影响,并进行了作用机理分析。研究得到“适度氧化”强化含藻污泥脱水性能及高藻水处理效果的优化条件,有效地提高了含藻污泥的含固率以及高藻水的净化效果,研究结果为蓝藻的减量化提供技术支撑。
采用铜绿微囊藻(FACHB-912,中科院武汉水生生物研究所)为研究对象。温度为25±1 ℃,光照强度为1500~2000 Lux,光照和黑夜循环周期为12 h:12 h。当每毫升水中藻细胞密度达到百万个以上(>1
采用次氯酸钠强化二价铁盐混凝的方法对铜绿微囊藻高藻水进行处理。将不同质量浓度梯度的次氯酸钠(NaClO=1.0、1.5、2.0和3.0 mg·
采用浮游植物荧光光谱仪(Phyto-PAM)检测藻细胞内光系统II的光合作用效率。采用电感耦合等离子体发射光谱仪(ICP-AES)进行
采用105 ℃恒温烘干称重法测定含藻污泥的含固率和混合液悬浮固体浓度(MLSS)。利用固相萃取装置对含藻污泥在0.5 bar(0.05 MPa)的真空度下进行过滤脱水,计算过滤速度。采用毛细吸水时间测定仪(TYPE 304B)测定毛细吸水时间,见式(1)~
(1) |
(2) |
(3) |
(4) |
式中:W为含固率,%;M1为坩埚与湿泥总质量,g;M2为坩埚与干泥总质量,g;M3为坩埚质量,g;M为混合液悬浮固体浓度,g·
次氯酸钠强化二价铁盐混凝会对铜绿微囊藻的细胞活性、完整性及藻毒素分泌产生影响,探究次氯酸钠浓度对藻细胞的影响以实现“适度氧化”。如

图1 次氯酸钠强化二价铁盐混凝对铜绿微囊藻细胞的影响
Fig.1 Effects of sodium hypochlorite-enhanced ferrous salt coagulation on Microcystis aeruginosa cells
藻细胞中的
藻毒素是藻细胞在生长过程中和环境影响下分泌的代谢产物,外界刺激会增加藻毒素释放。藻溶液中原有的藻毒素含量为1.68 µg·
不同质量浓度的次氯酸钠对溶液的pH和有机物含量均有影响。如

图2 次氯酸钠强化二价铁盐混凝对铜绿微囊藻溶液的影响
Fig.2 Effects of sodium hypochlorite-enhanced ferrous salt coagulation on Microcystis aeruginosa solution
溶液中有机物含量是评价水质情况的重要指标。图
真空过滤速度是单位时间内可过滤的藻细胞质量,由

图3 次氯酸钠强化二价铁盐混凝对含藻污泥脱水性能的影响
Fig.3 Effect of sodium hypochlorite-enhanced ferrous salt coagulation on the dewatering performance of algae-containing sludge
为了进一步验证含藻污泥脱水性能的变化情况,研究了次氯酸钠投加量对含藻污泥毛细吸水时间的影响。从
污泥含固率和混合液悬浮固体浓度(MLSS)可以直观分析含藻污泥的脱水效果,由式(1)~
为了表征藻絮体的团聚效果,分析了含藻污泥中藻絮体的粒径分布。

图4 次氯酸钠强化二价铁盐混凝对铜绿微囊藻絮体的粒径分布和Zeta电位的影响
Fig.4 Effect of sodium hypochlorite-enhanced ferrous salt coagulation on the particle size distribution and Zeta potential of Microcystis aeruginosa flocs
通过测定Zeta电位进一步研究了次氯酸钠对高藻水的强化混凝作用。如
藻细胞EPS的两大主要成分为水合度较高的蛋白质和多糖,对含藻污泥的脱水性能有重要影响。根据胞外聚合物与细胞结合的紧密程度,分为结合型EPS(B-EPS)和溶解型EPS(S-EPS)。B-EPS是一种双层结构,内层稳定地附着在藻细胞壁外,有一定的形状;外层结构较为松散、没有明显边缘的粘液层,能够向外围环境扩散。S-EPS分布于藻类胶群体的最外层,多为胶体状或溶解性分子形态,非常容易分散到水相中,主要包含大量的羧基、羟基、氨基等官能团的亲水性有机物,是水体中溶解性有机物的重要来

图5 次氯酸钠强化二价铁盐混凝对含藻污泥胞外聚合物中蛋白质和多糖含量的影响
Fig.5 Effect of sodium hypochlorite-enhanced ferrous salt coagulation on protein and polysaccharide content in EPS of algae-containing sludge
图

图6 次氯酸钠强化二价铁盐混凝对含藻污泥胞外聚合物(EPS)浓度的影响
Fig. 6 Effect of sodium hypochlorite-enhanced ferrous salt coagulation on the EPS concentration in algae-containing sludge
采用次氯酸钠强化二价铁盐混凝法处理高藻水,对藻类与水质的影响、含藻污泥脱水性能的影响等方面进行综合分析,并探究了作用机理,总结出以下结论:
(1) 次氯酸钠强化二价铁盐混凝能够提升含藻污泥的脱水性能与效果,当NaClO的质量浓度为1.5~2.0 mg·
(2) NaClO的氧化性促使F
(3) 次氯酸钠强化二价铁盐混凝能够优化高藻水的净化效果,溶解性有机碳的去除率由74%上升至90%,且水中的腐殖质类大分子和芳香族化合物的含量也有所下降。
作者贡献声明
唐玉霖:方案设计,机制分析;
吴梦怡:论文撰写,试验操作,数据收集;
孙天晓:数据整理;
王慕,张旻,王远:问题分析,论文修改。
参考文献
CARMICHAEL W W, BOYER G L. Health impacts from cyanobacteria harmful algae blooms: implications for the North American Great Lakes [J]. Harmful Algae, 2016, 54: 194. [百度学术]
朱喜, 胡明明. 中国淡水湖泊蓝藻暴发治理与预防 [M]. 北京: 中国淡水湖泊蓝藻暴发治理与预防, 2014. [百度学术]
ZHU X, HU M M. Control and prevention of cyanobacteria outbreak in freshwater lakes in China [M]. Beijing: China Water & Power Press, 2014. [百度学术]
LIANG J, ZHANG S, HUANG J, et al. Comprehensive insights into the inorganic coagulants on sludge dewatering: comparing aluminium and iron salts [J]. Journal of Chemical Technology and Biotechnology, 2019, 94(5): 1534. [百度学术]
DRIKAS M, CHOW C W K, HOUSE J, et al. Using coagulation, flocculation, and settling to remove toxic cyanobacteria [J]. Journal American Water Works Association, 2001, 93(2): 100. [百度学术]
郦光梅, 金宜英, 李欢, 等. 无机调理剂对污泥建材化的影响研究 [J]. 中国给水排水, 2006, (13): 82. [百度学术]
LI G M, JIN Y Y, LI H, et al. Study on effects of inorganic conditioner on sludge reuse as buliding materials [J]. China Water & Wastewater, 2006, (13): 82. [百度学术]
陈敏竹, 莫建能, 卢伟, 等. 高藻水处理方案探讨 [J]. 给水排水, 2009, 45(7): 28. [百度学术]
CHEN M Z, MO J N, LU W, et al. Discussion on the high algae content water treatment [J]. Water & Wastewater Engineering, 2009, 45(7): 28. [百度学术]
MA M, LIU R, LIU H, et al. Chlorination of microcystis aeruginosa suspension: cell lysis, toxin release and degradation [J]. J Hazard Mater, 2012, 217: 279. [百度学术]
WEI H, TANG Y, SHOEIB T, et al. Evaluating the effects of the preoxidation of H2O2, NaClO, and KMnO4 and reflocculation on the dewaterability of sewage sludge [J]. Chemosphere, 2019, 234: 942. [百度学术]
MA M, LIU R, LIU H, et al. Effect of moderate pre-oxidation on the removal of Microcystis aeruginosa by KMnO4-Fe(II) process: significance of the in-situ formed Fe(III) [J]. Water Research, 2012, 46(1): 73. [百度学术]
XU Y, WANG G, YANG W, et al. Dynamics of the water bloom-forming microcystis and its relationship with physicochemical factors in Lake Xuanwu (China) [J]. Environmental Science and Pollution Research, 2010, 17(9): 1581. [百度学术]
LIU B, QU F, CHEN W, et al. Microcystis aeruginosa-laden water treatment using enhanced coagulation by persulfate/Fe(II), ozone and permanganate: comparison of the simultaneous and successive oxidant dosing strategy [J]. Water Research, 2017, 125: 72. [百度学术]
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation - emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701. [百度学术]
MA C, PEI H, HU W, et al. Significantly enhanced dewatering performance of drinking water sludge from a coagulation process using a novel chitosan-aluminum chloride composite coagulant in the treatment of cyanobacteria-laden source water [J]. Rsc Advances, 2016, 6(66): 61047. [百度学术]
LI X, PEI H, HU W, et al. The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes [J]. Environmental Technology, 2015, 36(7): 920. [百度学术]
HO L, DREYFUS J, BOYER J, et al. Fate of cyanobacteria and their metabolites during water treatment sludge management processes [J]. Science of the Total Environment, 2012, 424: 232. [百度学术]
QI J, LAN H, LIU H, et al. Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance microcystis aeruginosa removal in KMnO4-Fe(II) process [J]. Water Research, 2016, 105: 551. [百度学术]
钱爱娟, 潘嵘, 孙凤, 等. 蓝藻胞外聚合物的污染和调控研究进展 [J]. 环境污染与防治, 2017, 39(8): 916. [百度学术]
QIAN A J, PAN R, SUN F, et al. Contanmination and regulation trends of cyanobacterial extracellular polymeric substances [J]. Environmental Pollution & Control, 2017, 39(8): 916. [百度学术]
SPONZA D T. Extracellular polymer substances and physicochemical properties of flocs in steady- and unsteady-state activated sludge systems [J]. Process Biochemistry, 2002, 37(9): 983. [百度学术]
HE D Q, WANG L F, JIANG H, et al. A fenton-like process for the enhanced activated sludge dewatering [J]. Chemical Engineering Journal, 2015, 272: 128. [百度学术]