摘要
针对太湖原水中氨基酸氯化消毒后可能引发的嗅味问题,采用太湖某水厂滤后水为研究对象,考察了O3/H2O2深度处理工艺对水中致嗅氨基酸的去除效果及影响因素。结果表明滤后水中致嗅氨基酸占总游离氨基酸的81.6%,采用O3/H2O2工艺降解致嗅氨基酸的最佳投量为1.5 mg·
太湖是中国第三大淡水湖,也是多个城市数百万人的饮用水源。然而,在过去的几十年里,由于工业废水、农业径流和生活污水的随意排放,大量的营养物质被引入太湖,使太湖富营养化严重,并导致藻类的大量繁殖,藻类的代谢和死亡导致水中的有机物浓度升高
太湖某水厂以太湖为原水,目前其传统常规处理工艺并不能有效降解FAAs等低分子量有机物质,采用的臭氧活性炭深度处理工艺对FAAs的去除效果不稳
因此,本文在前期识别太湖原水中OAAs的研究成果基础
实验中的O3以臭氧水的形式投加,以便准确控制臭氧投加量,装置如

图1 臭氧水制备装置
Fig 1 The ozonation experiment device
水样为太湖某水厂滤后水,其原水为太湖。采集滤后水样的水质特征见
O3/H2O2实验于500 mL锥形瓶中进行,在锥形瓶中加入400 mL水样,分别根据反应所需O3和H2O2浓度计算所需臭氧水和H2O2溶液体积,迅速用玻璃注射器从
由于天然水体中FAAs含量较低,直接检测难度大,本课题组前期研究提出经固相萃取法富集后采用液相色谱-质谱/质谱 (HPLC-MS/MS)检测水体中FAAs的方
首先拟对天然水体滤后可能存在的20种FAAs进行检测,包括:丙氨酸 (Ala)、缬氨酸 (Val)、赖氨酸 (Lys)、精氨酸 (Arg)、天冬酰胺 (Asp)、天冬氨酸 (Asp)、谷氨酰胺 (Glu)、谷氨酸 (Glu)、甘氨酸 (Gly)、组氨酸 (His)、异亮氨酸 (Ile)、亮氨酸 (Leu)、蛋氨酸 (Met)、鸟氨酸 (Orn)、苯丙氨酸(Phe)、脯氨酸 (Pro)、丝氨酸 (Ser)、苏氨酸 (Thr)、色氨酸 (Try)和酪氨酸 (Tyr)。之后基于前期对OAAs识别的研究成
常规水处理工艺中的混凝沉淀过程可以去除水中的大分子有机物,但是对小分子量物质,如FAAs去除效果较

图2 滤后水FAAs种类及浓度
Fig 2 Species and concentrations of FAAs in filtered water
以太湖某水厂滤后水作为研究对象,分别研究1.0,1.5,1.7,2.0和3.0 mg·

图3 不同O3投加量下滤后水AAs的去除
Fig 3 Removal of AAs in filtered water under different initial O3 dosages
在O3投加量为1.5 mg·
根据以上实验结果,取O3投加量为1.5 mg·
如

图4 O3/H2O2工艺对滤后水AAs的去除及BrO
Fig 4 Removal of AAs by O3/H2O2 process and BrO
另外,该工艺对于BrO
因此, O3/H2O2高级氧化技术能有效去除滤后水中TOAAs并能较好的抑制BrO
根据O3单独氧化实验结果,取O3投加量为1.5 mg·

图5 O3/H2O2工艺在不同H2O2投加量下对滤后水AAs的去除及BrO
Fig 5 Removal of AAs by O3/H2O2 process and BrO
另外,H2O2的投加对于BrO
因此,对于当前水质,O3/H2O2高级氧化技术的最佳投加量为:1.5 mg·
根据上述结果,采用1.5 mg·

图6 温度对O3/H2O2去除滤后水AAs的影响
Fig 6 Effect of temperature on AAs removal in filtered water during O3/H2O2 process
根据上述结果,以滤后水作为对象,研究不同初始pH对O3/H2O2去除OAAs效果的影响。采用1.5 mg·

图7 初始pH 对O3/H2O2去除滤后水AAs的影响
Fig 7 Effect of initial pH (b) on AAs removal in filtered water during O3/H2O2 process
本文以太湖某水厂滤后水为对象,研究O3/H2O2高级氧化技术对太湖OAAs的去除效果,同时考察温度和pH的影响,得到以下主要结论:
(1)该太湖水厂滤后水中TFAAs和TOAAs含量分别为6 810.85 ng·
(2)对于单独O3氧化处理,O3投加量为2 mg·
(3)对于O3/H2O2工艺,适用于太湖OAAs去除的最佳投量为1.5 mg·
(4)在10℃~30℃范围内,温度越高,O3/H2O2工艺对AAs的去除率越高。在pH=6~8的范围内,O3/H2O2工艺对TFAAs和TOAAs的去除率均随pH的升高而增大。
作者贡献声明
蔡璐阳:制定研究方案,开展实验和论文撰写。
黎雷:提供技术指导和全文审阅修改。
于水利:提供思路,研究支持和全文审阅修改。
郭婧轩:开展实验和数据处理。
张天阳:论文审阅。
参考文献
GUO L. Doing battle with the green monster of Taihu Lake[J]. Science, 2007, 317(5842): 1166. [百度学术]
LI L, GAO N, DENG Y, et al. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds[J]. Water Research, 2012, 46(4): 1233. [百度学术]
LI X, RAO N R H, LINGE K L, et al. Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination[J]. Water research, 2020, 183: 116047. [百度学术]
ZHANG K, PAO R, LUO Z, et al. Interspecific competition between Microcystis aeruginosa and Pseudanadaena and their production of T&O compounds[J]. Chemosphere, 2020, 252:126509 [百度学术]
DOTSON A D, KEEN V O, METZ D, et al. UV/H2O2 treatment of drinking water increases post-chlorination DBP formation[J]. Water Research, 2010, 44(12): 3703. [百度学术]
CHU W, LI D, GAO N, et al. Comparison of free amino acids and short oligopeptides for the formation of trihalomethanes and haloacetonitriles during chlorination: Effect of peptide bond and pre-oxidation[J]. Chemical Engineering Journal, 2015, 281: 623. [百度学术]
YU Y, RECKHOW D A. Formation of metastable disinfection byproducts during free and combined aspartic acid chlorination: Effect of peptide bonds and impact on toxicity[J]. Water Research, 2020, 168:115131 [百度学术]
BOND T, TEMPLETON M R, RIFAI O, et al. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates[J]. Chemosphere, 2014, 111: 218. [百度学术]
CAI L, LI L, YU S, et al. Formation of odorous by-products during chlorination of major amino acids in East Taihu Lake: Impacts of UV, UV/PS and UV/H2O2 pre-treatments[J]. Water Research, 2019, 162: 427. [百度学术]
CAI L, LI L, YU S. Formation of odorous aldehydes, nitriles and N-chloroaldimines from combined leucine in short oligopeptides during chlorination[J]. Water Research, 2020, 177: 115803. [百度学术]
卢泳珊, 徐斌, 张天阳, 等. 饮用水中嗅味物质N-氯代亚胺的分布规律研究[J]. 给水排水, 2020, 56(12): 19. [百度学术]
LU Yongshan, XU Bin, ZHANG Tianyang, et al. Investigation on the distribution of N-chloroaldimine odorants in drinking water[J]. Water&Waste Water Engineering, 2020, 56(12): 19. [百度学术]
史之源, 郭玲, 于水利, 等. 东太湖水源水致嗅氨基酸以及常规与O3-PAC工艺的处理效能[J]. 给水排水, 2020, 56(2): 14. [百度学术]
SHI Zhiyuan, GUO Ling, YU Shuili, et al. Odor-related amino acids in East Tai Lake and its treatment technology[J]. Water&Waste Water Engineering, 2020, 56(2): 14. [百度学术]
ZHOU X, ZHANG K, ZHANG T, et al. An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS) [J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3537. [百度学术]
ZHANG K, CAO C, ZHOU X, et al. Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism[J]. Water Research, 2018, 131: 11. [百度学术]
BONIFACIC M, STEFANIC I, HUG G L, et al. Glycine decarboxylation: The free radical mechanism[J]. Journal of the American Chemical Society, 1998, 120(38): 9930. [百度学术]
LELACHEUR R M, GLAZE W H. Reactions of ozone and hydroxyl radicals with serine[J]. Environmental Science & Technology, 1996, 30(4): 1072. [百度学术]
ATASI K Z, CHEN T P, HUDDLESTON J I, et al. Factor screening for ozonating the taste- and odor-causing compounds in source water at Detroit, USA[J]. Water Science and Technology, 1999, 40(6): 115. [百度学术]
ACERO J L, HADERLEIN S B, SCHMIDT T C, et al. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation[J]. Environmental Science & Technology, 2001, 35(21): 4252. [百度学术]
ELOVITZ M S, VONGUNTEN U. Hydroxyl radical ozone ratios during ozonation processes. I—the R-ct concept[J]. Ozone-Science & Engineering, 1999, 21(3): 239. [百度学术]
VONGUNTEN U, HOLGNE J. Bromate formation during ozonation of bromide-containing waters — interaction of ozone and hydroxyl radical reactions[J]. Environmental Science & Technology, 1994, 28(7): 1234. [百度学术]