摘要
2019年夏季在长江口―东海海域纵向断面上进行现场采样和观测,获取了12个走航站位和低氧区1个连续测站的水质数据和24个底层水样,样品经过滤、固相萃取和乙基化衍生等处理后利用气相色谱‒质谱联用仪检测了9种有机锡化合物浓度,旨在分析其在长江口海域的空间分布和潮汐变化特征,并探索其在口外低氧区的行为。结果表明,在长江口海域底层水体中溶解态有机锡质量浓度范围为33.9 ~ 203 ng⋅
有机锡化合物(OTCs)用途广泛,可在河口近岸水体、沉积物和生物体中检
自TBT有关禁令生效以来,发达国家沿海地区TBT污染问题有所缓解,但在沉积物中仍持久存在。智利、巴西、阿根廷、印度、南非等发展中国家的港口近岸沉积物中丁基锡(BTs)污染问题逐渐凸
河口是河流与海水的过渡地带,具有显著的陆海相互作用。长江口作为世界超大河口之一,既是长三角地区重要的城市水源地,也是许多稀有物种(如中华鲟)的重要栖息地和繁殖地,同时其邻近海域是江浙沪的重要渔场。据报道,长江口及邻近海域沉积物和鱼贝类生物中普遍检出有机锡,对海洋生物及人体健康具有潜在威
因此,本研究旨在调查长江口至近海的典型断面底层水中有机锡赋存特征的空间变化及其在低氧区的潮汐变化规律;在此基础上,试图探究低氧事件下有机锡的环境行为。
2019年8月,选取长江口―东海纵断面C1、C4、C6 ~ C10、C12、B15、C13~C15等12个站位进行垂线观测,如

图1 长江口底层水采样点位分布示意图
Fig.1 Distribution diagram of bottom water sampling sites in the Yangtze River estuary
标准品:一甲基三氯化锡(MMT,99.9%)购于日本林纯药工业株式会社;二甲基二氯化锡(DMT,99.9%)、三甲基氯化锡(TMT,98%)、一丁基三氯化锡(MBT,95%)、二丁基二氯化锡(DBT,97.2%)、三丁基氯化锡(TBT,95%)、一苯基三氯化锡(MPhT,98%)、二苯基二氯化锡(DPhT,97%)、三苯基一氯化锡(TPhT,96%)、内标三丙基氧化锡(TPrT,96%)均购于德国Dr.Ehrenstorfer公司。
其他材料:甲醇(CNW公司,德国,色谱纯99.8%);正己烷(CNW公司,德国,色谱纯95%);四乙基硼化钠(CNW公司,德国,98%);醋酸、醋酸钠、氢氧化钠、氢氧化钾为分析纯,购于国药集团化学试剂有限公司;实验用水为超纯水净化系统制备的Milli‒Q超纯水(18.2 MΩ⋅cm)。
采用SCX小柱(500 mg/6 mL,CNW公司)进行固相萃取,小柱先用5 mL甲醇活化,再准确量取1 L底层水样匀速通过小柱,淋洗之后用5 mL洗脱液进行洗脱。洗脱溶液为氯化铵,浓度为0.8 mol⋅
有机锡化合物定性和定量分析采用气相色谱‒质谱仪(GC‒MS),型号为QP 2010 Plus(Shimadzu,日本),色谱柱为HP‒5MS(30 m×0.25 mm,0.25 µm)。进样口温度为250 ℃,采用不分流模式进样,进样量为1 µL,柱流量为1 mL⋅mi
从采样、运输至实验室检测,尽可能避免使用塑料器材,减少污染。经多次选材比对后,确定实验所用固相萃取小柱为SCX小柱(CNW公司),在本实验条件下无目标化合物溶出。经甲醇稀释配置5个等质量浓度梯度(25~500 μg⋅
注: 在统计计算时,检出率为50%及以上的化合物未检出部分按检出限的1/2计算,而检出率不足50%的化合物未检出部分按检出限的1/4计算。
实际分析时,为更好地和其他研究进行对比,需将测试结果由有机锡阳离子计量的质量浓度转换为以Sn计量的质量浓度,换算公式为
(1) |
式中:为Sn的质量浓度(ng⋅
TBT和TPhT降解程度,也即“新旧程度”,可用丁基锡降解指数(BDI)和苯基锡降解指数(PhDI)来衡量,小于1表示有新近输入,反之则表示历史性输
(2) |
(3) |
根据《海洋监测规范》(GB17378.1―2007)的规定,目标化合物的检出率占样品频数的1/2以上(包括1/2)或不足1/2时,未检出部分分别取检出限的1/2和1/4量参加平均值、标准偏差等统计运算。
9种目标有机锡化合物普遍存在于长江口海域底层水体中,本文仅对溶解态OTCs进行了分析。水中TBT检出率较低(42%),而其余OTCs分别在92% ~ 100%样品中被检出,其质量浓度离散程度差异较大(

图2 长江口底层水中各种有机锡化合物质量分数
Fig.2 Proportion of various organotin compounds in bottom water of the Yangtze River estuary
本次调查中TBT检出质量浓度最高,可达53.1 ng⋅
长江口底层水中溶解态OTCs质量浓度沿河流主轴向海未观测到单调上升或下降趋势(

图3 长江口不同站点底层水中溶解态有机锡质量浓度及其不同形态占比
Fig.3 Total concentrations of dissolved organotin and proportions of their different species in bottom water of different sites in the Yangtze River estuary

图4 长江口底层水中各形态有机锡质量浓度的空间分布特征
Fig.4 Spatial distribution of concentrations of various organotin species in bottom water of the Yangtze River estuary
长江口最大浑浊带的沉积物再悬浮过程强烈,悬浮物质量浓度远高于其上下

图5 C13站位底层水中溶解态有机锡质量浓度及其不同形态占比在半日潮周期内的变化
Fig.5 Variation of total concentrations of dissolved organotin and proportions of their different species in bottom water at Station C13 in a semidiurnal tidal cycle

图6 C13站位底层水中有机锡形态及其质量浓度在半日潮周期内的变化
Fig.6 Variation of organotin species and concentrations in bottom water at Station C13 in a semidiurnal tidal cycle
沉积物再悬浮作用促使最大浑浊带与羽状锋区出现有机锡质量浓度峰值。已有研究表明,每当底部沉积物经历再悬浮过程时,将加剧底边界层内的化学耗氧过
TBT、TPhT因海洋生态效应显著而备受关注,可通过微生物降解和紫外光解等主要途径脱丁基或脱苯基,逐步分解为DBT、MBT或DPhT、MPh
在本研究中,观测到不同站点的TPhT、MBT质量浓度与DO饱和度存在显著的负相关关系(r = 0.596,p < 0.05;r = 0.623,p < 0.05),即TPhT、MBT质量浓度随着DO饱和度的减少而呈升高趋势(

图7长江口—东海纵向断面底层水溶解态三苯基锡(TPhT)和一丁基锡(MBT)质量浓度与溶解氧(DO)饱和度的关系
Fig.7 Relation between dissolved triphenyltin (TPhT)and monobutyltin (MBT) concentrations and dissolved oxygen (DO) saturation in bottom water along longitudinal sections from the Yangtze River estuary to the East China Sea
TBT和TPhT对颗粒物有很高的亲和力(其分配系数Kd均大于3 500),并在沉积物相中具有数年甚至数十年的半衰期,降解速度缓
长江口底层水体中普遍存在苯基锡、丁基锡和甲基锡等有机锡污染问题,其中三苯基锡和三丁基锡主要源自历史输入的残留,但低取代有机锡还有其他来源。在最大浑浊带和羽状锋区,潮流作用加剧的沉积物再悬浮、低氧等条件,将促进底层水中有机锡的释放,尤其是沉积物中残留的TBT以及一取代有机锡化合物,导致脉冲式暴露,部分样点的TBT污染水平超出了保护海洋生物水质基准。长江口底层水TPhT污染水平也超出了相应水质基准推导值,其生态风险值得进一步关注和研究。
作者贡献声明
黄清辉:研究构思,论文撰写与修改。 作者贡献声明:
闻 翔:水质分析,数据处理与分析,论文撰写。
戴 琦:样品处理与仪器分析。
陈 玲:监测数据分析与评估。
王 锐:研究构思与论文修改。
尹大强:学术指导与论文修改。
王殿常:学术指导与监测评估。
丁 玲:监测数据分析与评估。
施 蓓:监测数据分析与评估。
参考文献
CHEN Z, CHEN L, CHEN C, et al. Organotin contamination in sediments and aquatic organisms from the yangtze estuary and adjacent marine environments[J]. Environmental Engineering Science, 2017, 34(4):227. [百度学术]
CHEN C Z, CHEN L, XUE R, et al. Spatiotemporal variation and source apportionment of organotin compounds in sediments in the Yangtze Estuary[J]. Environmental Sciences Europe, 2019, 31: 9. [百度学术]
CACCIATORE F, BRUSA R B, NOVENTA S, et al. Imposex levels and butyltin compounds (BTs) in Hexaplex trunculus (Linnaeus, 1758) from the northern Adriatic Sea (Italy): Ecological risk assessment before and after the ban[J]. Ecotoxicology and Environmental Safety, 2018, 147: 688. [百度学术]
DOS SANTOS D M , TURRA A, DE MARCHI M R R, et al. Distribution of butyltin compounds in Brazil's southern and southeastern estuarine ecosystems: assessment of spatial scale and compartments[J]. Environmental Science and Pollution Research, 2016, 23(16): 16152. [百度学术]
QUINTAS P Y, OLIVA A L, ARIAS A, et al. Seasonal changes in organotin compounds in sediments from the Bahía Blanca Estuary[J]. Environmental Earth Sciences, 2016, 75(8): 659. [百度学术]
MATTOS Y, ROMERO M S. Imposex in Thaisella chocolata (Duclos, 1832) (Gastropoda: Muricidae) Caldera Bay, Chile[J]. Latin American Journal of Aquatic Research, 2017, 44(4): 825. [百度学术]
CAO D, JIANG G, ZHOU Q, et al. Organotin pollution in China: an overview of the current state and potential health risk[J]. Journal of Environmental Management, 2008, 90(S1): 16. [百度学术]
GRAHAM, BLACKMORE. Imposex in thais clavigera (Neogastropoda) as an indicator of TBT (tributyltin) bioavailability in coastal waters of Hong Kong[J]. Journal of Molluscan Studies, 2000, 66(1):1. [百度学术]
HUNG T C, HSU W K, MANG P J, et al. Organotins and imposer in the rock shell, Thais clavigera, from oyster mariculture areas in Taiwan[J]. Environmental Pollution, 2001, 112(2): 145. [百度学术]
SHI H H, HUANG C J, ZHU S X, et al. Generalized system of imposex and reproductive failure in female gastropods of coastal waters of mainland China[J]. Marine Ecology Progress Series, 2005, 304: 179. [百度学术]
黄晓丹,吴海莲,沈青,等.舟山海域腹足类动物性畸变研究[J].安徽农业科学,2011,39(22):13277. [百度学术]
HUANG Xiaodan,WU Hailian,SHEN Qing,et al. Studies on imposex of marine gastropods in Zhoushan[J]. Journal of Anhui Agricultural Sciences, 2011,39(22):13277. [百度学术]
安立会,张燕强,宋双双,等.渤海湾有机锡污染对野生脉红螺的生态风险[J].环境科学,2013,34(4):1369. [百度学术]
AN Lihui,ZHANG Yanqiang,SONG Shuangshuang,et al. Study on the ecological risk of wild veined rapa whelk(Rapana venosa) exposured to organotin compounds in Bohai Bay,China[J]. Environmental Science, 2013,34(4):1369. [百度学术]
赵冬梅,张蓬,林忠胜,等.锦州湾沉积物和生物体中有机锡化合物的分布特征及生态风险评价[J].广西科学院学报,2015,31(3):179. [百度学术]
ZHAO Dongmei,ZHANG Peng,LIN Zhongsheng,et al. Spatial distribution and ecological risk assessment of organotin compounds in sediment and organism of Jinzhou Bay[J]. Journal of Guangxi Academy of Sciences,2015,31(3):179. [百度学术]
CHEN C, CHEN L, HUANG Q, et al. Organotin contamination in commercial and wild oysters from China: increasing occurrence of triphenyltin[J]. Science of The Total Environment, 2018, 650: 2527. [百度学术]
SHAM R, TAO L, MAK Y, et al. Occurrence and trophic magnification profile of triphenyltin compounds in marine mammals and their corresponding food webs[J].Environment International, 2020, 137: 105567. [百度学术]
韦钦胜,王保栋,于志刚,等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学:地球科学, 2017, 47(1): 114. [百度学术]
WEI Qingsheng,WANG Baodong,YU Zhigang,et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang estuary in summer[J]. Science China-Earth Sciences, 2017, 47(1): 114. [百度学术]
YANG W , WEI H , ZHAO L . Observations of tidal straining within two different ocean environments in the East China Sea: stratification and near‐bottom turbulence[J]. Journal of Geophysical Research: Oceans, 2017, 122(11):8876. [百度学术]
GAO J M, ZHANG Y, GUO J S, et al. Occurrence of organotins in the Yangtze River and the Jialing River in the urban section of Chongqing, China[J]. Environmental Monitoring and Assessment, 2013, 185(5): 3831. [百度学术]
GAO J M, WU L, CHEN Y P, et al. Spatiotemporal distribution and risk assessment of organotins in the surface water of the Three Gorges Reservoir Region, China[J]. Chemosphere, 2017, 171: 405. [百度学术]
JADHAV S, BHOSLE N B, MASSANISSO P, et al. Organotins in the sediments of the Zuari estuary, west coast of India[J]. Journal of Environmental Management, 2009, 90(S1): 4. [百度学术]
TUNC M, AY U, CAN S Z, et al. Quantification of tributyltin in seawater using triple isotope dilution gas chromatography-inductively coupled plasma mass spectrometry achieving high accuracy and complying with European Water Framework Directive limits[J]. Journal of Chromatography A, 2021, 1637: 10. [百度学术]
YI A X, LEUNG K M Y, LAM M H W, et al. Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment[J]. Chemosphere, 2012, 89(9): 1015. [百度学术]
WEN J, CUI X, GIBSON M, et al. Water quality criteria derivation and ecological risk assessment for triphenyltin in China[J]. Ecotoxicology and Environmental Safety, 2018, 161: 397. [百度学术]
WU J, LIU J T, XIA W. Sediment trapping of turbidity maxima in the Changjiang Estuary[J]. Marine Geology, 2012, 303: 14. [百度学术]
ARNOLD C G, WEIDENHAUPT A, DAVID M M, et al. Aqueous speciation and 1-octanol-water partitioning of tributyl- and triphenyltin: effect of pH and ion composition[J]. Environmental Science & Technology, 1997, 31(9): 2596. [百度学术]
OPHITHAKORN T, SABAH A, DELALONDE M, et al. Organotins’ fate in lagoon sewage system: dealkylation and sludge sorption/desorption[J]. Environ Science and Pollution Research, 2016, 23(22): 22832. [百度学术]
JOLLIFF J K, JAROSZ E, LADNER S, et al. The optical signature of a bottom boundary layer ventilation event in the northern gulf of Mexico’s Hypoxic Zone[J]. Geophysical Research Letters, 2018, 45(16): 8390. [百度学术]
刘贲,张霄宇,曾江宁,等. 长江口低氧区的成因及过程[J]. 海洋地质与第四纪地质, 2018, 38(1): 187. [百度学术]
LIU Ben,ZHANG Xiaoyu,ZENG Jiangning,et al. The origin and process of hypoxia in the Yangtze River estuary[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 187. [百度学术]
汪亚平,高建华,潘少明. 长江河口区边界层参数的观测与分析[J]. 海洋地质动态, 2006, 22(7):16. [百度学术]
WANG Yaping,GAO Jianhua,PAN Shaoming. Measurement of bottom boundary layer parameters of the Yangtze River estuary[J]. Marine Geology Letters, 2006, 22(7):16. [百度学术]
DOWSON P H, BUBB J M, WILLIAMS T P, et al. Degradation of tributyltin in freshwater and estuarine marina sediments[J]. Water Science and Technology, 1993, 28: 133. [百度学术]
高俊敏,张科,郭劲松,等. 三峡库区次级河流中有机锡污染物浓度及形态分布规律[J]. 环境科学学报, 2015, 35(7): 2160. [百度学术]
GAO Junmin,ZHANG Ke,GUO Jinsong,et al. Occurrence of organotins in secondary tributary of Three Gorges Reservoir Area[J]. Acta Scientiae Circumstantiae, 2015, 35(7): 2160. [百度学术]
DIAZ J, HIGUERA-RUIZ R, ELORZA J, et al. Distribution of butyltin and derivatives in oyster shells and trapped sediments of two estuaries in Cantabria (Northern Spain)[J]. Chemosphere, 2007, 67(3): 623. [百度学术]
OLDHAM V E, SIEBECKER M G, JONES M R, et al. The speciation and mobility of Mn and Fe in estuarine sediments[J]. Aquatic Geochemistry, 2019, 25(1): 3. [百度学术]
FURDEK M, MIKAC N, BUENO M, et al. Organotin persistence in contaminated marine sediments and porewaters: in situ degradation study using species-specific stable isotopic tracers[J]. Journal of Hazardous Materials, 2016, 307: 263. [百度学术]
BRIANT N, BANCON-MONTIGNY C, FREYDIER R, et al. Behaviour of butyltin compounds in the sediment pore waters of a contaminated marina (Port Camargue, South of France)[J]. Chemosphere, 2016, 150: 123. [百度学术]
WHALEN D, LUCERO R, MAY L, et al. The effects of salinity and pH on the speciation of some triphenyltin compounds in estuarine sediments using Mssbauer spectroscopy[J]. Applied Organometallic Chemistry, 1993, 7(3): 219. [百度学术]