摘要
我国餐厨垃圾产量大、含水率高且极易腐烂变质,收集、处理困难,利用率低。如何环保、高效、经济地处理及资源化利用餐厨垃圾成为关注的焦点。乳酸(LA)作为一种重要的有机酸广泛应用于食品、化工等领域。在微生物发酵产乳酸机理及餐厨垃圾发酵制备乳酸工艺发展的基础上,综述了菌种、碳源和氮源、pH值等重要因素对餐厨垃圾发酵产乳酸的影响,并分析了发酵液中乳酸分离提纯技术的发展现状,展望了今后餐厨垃圾发酵产乳酸技术研究与应用的重点和难点。
现如今我国经济飞速发展,如何使城市生态文明建设与经济发展相平衡越来越受到人们的重视。在城镇化过程中,垃圾的分类与处理已经成为生态文明建设的重中之重。根据2020年12月我国生态环境部发布的《2020年全国大、中城市固体废物污染环境防治年报》数据显示,2019年全国196个大、中城市生活垃圾产生量达2.36亿吨,其中上海市0.11亿吨,北京市0.10亿吨。然而,城市生活垃圾的收集与处理中仍存在着居民回收意识与参与度不高、法律政策体系权责不明晰、垃圾回收设施不完整与处理效率低下等问
通常,城镇湿垃圾主要以餐厨垃圾为主,是居民在日常生活中以及食品加工中产生的食物废料,包括菜叶、剩菜剩饭、果皮蛋壳等。随着我国城市人民生活水平的提高,餐厨垃圾的产生量迅速增加,上海、北京、重庆、广州等主要城市的餐厨垃圾日产生量均已超过2 000吨。餐厨垃圾含有大量的水分与有机质,极易腐烂变质,传播细菌和病毒,影响环境并危害人们的身体健康。传统上餐厨垃圾处理一般采用焚烧、填埋、堆肥等方法,随着科技的发展,相继出现了湿热处理、厌氧发酵、高温炭化等技
乳酸是合成聚乳酸类可完全生物降解塑料的主要原料,又名2‒羟基丙酸,是一种重要的有机酸,可作为原料、添加剂、防腐剂、消毒剂、调节剂等,广泛应用于酿造、食品、化妆品、医药、纺织、环保等领域,社会需求量日益增加,其中L‒乳酸是人体唯一能直接代谢利用的乳酸。目前,乳酸生产量位居全球所有有机酸生产量的第一位,其工业生产方法主要有化学合成法和微生物发酵法,前者采用的原料主要为乙醛和氰化氢,经反应制得乳腈后进行H2SO4水解生成乳酸,后者主要以葡萄糖、蔗糖等为基质,用微生物发酵的方法制取乳
基于此,在简述微生物发酵产乳酸原理的基础上对餐厨垃圾发酵产乳酸工艺的发展与现状、影响因素、分离提纯等进行了详细综述,并对今后的研究进行了分析与展望。
目前,制备乳酸主要采用发酵的方法,世界上商业销售的乳酸约有90%是通过微生物发酵制得,其中乳酸菌的产酸能力最强且工业应用最

图1 乳酸菌利用葡萄糖产乳酸的代谢途
Fig.1 Metabolic pathway of lactic acid production from glucose by lactic acid bacteri
从生化机制上,微生物发酵产乳酸可分为同型乳酸发酵、异型乳酸发酵和双歧乳酸发酵三大类。同型乳酸发酵的末端产物只有乳酸,理论上转化率为100%,但由于微生物还存在其他的生理活动,因此转化率一般在80%以
一般而言,微生物发酵法制备乳酸的工艺过程可分为预处理、发酵、分离和提纯等阶段。在预处理阶段对底物进行物理或化学改良,可以降低微生物对底物分解利用的难度,增加乳酸产
传统的餐厨垃圾发酵产乳酸工艺由水解、糖化、发酵、乳酸分离等过程组成,餐厨垃圾中的淀粉、蛋白质等有机物在淀粉酶与蛋白酶的作用下糖化,然后加入乳酸菌进行发酵,通过过滤、离心、蒸馏等方法对乳酸进行分离,工艺流程如

图2 餐厨垃圾发酵产乳酸的传统工艺流
Fig.2 Traditional process of lactic acid production by food waste fermentatio
由于水解酶(包括淀粉酶、蛋白酶等)与微生物的最佳适应条件不同,因此糖化酶与乳酸菌在工艺流程的不同部分中发挥作用。然而,在水解糖化阶段,水解酶极易受产物糖积累的抑制,导致流程操作复杂,发酵周期长,产乳酸率低。例如,在没有外加碳源和氮源、非无菌的条件下对餐厨垃圾进行批式发酵,糖化酶的活性受到了一定程度抑制,乳酸的产率仅为63
同时糖化发酵法,即SSF工艺,其酶解糖化和发酵过程在一个反应容器中同时进行,边糖化边发酵,不仅缩短了反应时间,提高了设备的利用率,还减少了杂菌的污染。此外,相对于传统发酵工艺,SSF工艺不需要先提取糖,能够降低水解糖积累对酶反应的抑制,加速水解糖化速率,产率高。然而,SSF工艺的一个主要缺点在于水解和发酵步骤的温度和pH值不匹配,前者在温度为50~55 ℃和pH值为4.5~5.5时最有效,而后者的理想温度低于40 ℃,最佳pH值为5.0~7.
连续发酵法生产乳酸是指不断加入新鲜的有机底物,并将微生物细胞生产的代谢产物快速排出从而维持反应器发酵过程连续化的工艺。该工艺生产效率高、操作简单且易于管理,由于发酵过程中基质的稀释比例较高,因此通常能够得到较高的乳酸体积产
微生物发酵制备乳酸的过程中,乳酸的存在会对发酵产生反馈抑制作用,即发酵过程中乳酸的产生会不断降低发酵液的pH值,使细胞质酸化并降低微生物的发酵活性,抑制乳酸菌的生长和产酸量,降低乳酸产
近年来,有研究将动态膜模块插入发酵反应器中以增加食物残渣中乳酸的产生,发现在pH值为4.0时乳酸产量最高,达0.57 g·(g总固体
固定化细胞技术是指对于具有一定生理功能的生物细胞,如微生物细胞、植物细胞或动物细胞等,通过适当的物理、化学方法将其固定在一定范围内,使其保持活性并进行生殖代谢的方法。与游离细胞相比,固定化细胞具有不易受污染、发酵速率高、细胞回收利用率低、对底物和产物的抑制作用小等优点,并且细胞固定化还可以改善工业微生物的处理特性,增加生物反应器的容量生产
有研究将光交联树脂固定化技术应用于乳酸发酵,工程酵母细胞被固定在树脂凝胶中,可以长时间保持恒定的活性。由于工程酵母可以在缺乏营养的培养基(如糖蜜培养基)中生长良好并高效地生产高光学纯度的乳酸,因此当工程酵母的产量提高时,低成本高光学纯度的乳酸产量也可随之提
影响餐厨垃圾发酵产乳酸的因素主要有菌种、营养物质、氧气、基质、温度、pH值以及各种离子等。在乳酸发酵工艺的发展中,国内外学者针对发酵的影响因素开展了大量的研究。
众所周知,能够产生乳酸的微生物有很多,如细菌、真菌和酵母菌等。产乳酸细菌可分为四大类,即乳酸菌、芽孢杆菌、大肠杆菌和谷氨酸棒状杆
乳酸菌是工业上应用最多的细菌,芽孢杆菌则具有耐高温、快速复活和较强分泌酶等特点,抗污染能力强,底物来源广。大肠杆菌因代谢路径清晰、营养需求简单和发酵周期短等优势而常被用于基因工程改良,改良后的大肠杆菌能够利用葡萄糖、甘油、蔗糖等进行产乳酸发
根霉菌是研究最多的产乳酸真菌,因可分解利用淀粉基原料、菌体易于分离并能产生高光学纯度的乳酸而逐渐成为研究的热
相对于细菌和霉菌,酵母菌具备更好的耐酸特性,可在强度更高的酸性条件下生长,克服了发酵过程受酸积累抑制的影响。此外,酵母菌也是基因工程中良好的真核基因受体菌,与大肠杆菌相比有更加完备的基因调控、表达和修饰能
采用单一菌种对餐厨垃圾发酵产乳酸难以充分利用底物中的各种营养,加上各种菌种都存在一定的不足之处,使得乳酸的产量较低。为了弥补菌种在发酵过程中的缺陷,近年来人们逐渐采用混合及改良菌种的方法来生产乳酸。有研究以枣汁为底物,对Lactobacillus casei 和 Lactococcus lactis分别进行单一和混合培养发酵,发现混合培养系统中乳酸最高质量浓度可达60.3 g·
一般情况下,在餐厨垃圾发酵液中添加复杂的氮源,如玉米浆(CSL)、酵母提取物、蛋白胨、硝酸铵、硫酸铵等达到合适的C/N比,可以促进乳酸的产
餐厨垃圾发酵过程中随着乳酸的产生,pH值会逐渐降低,影响乳酸菌的活性并对乳酸产率有严重的抑制作用。不同的初始pH值及在发酵过程中对pH值的控制对乳酸产量与产率均有较大影响。一般来说,乳酸发酵的理想pH值在5.0与7.0之
大多数乳酸细菌均为厌氧菌或兼性厌氧菌,厌氧或减少氧分压有利其生长。拟干酪乳杆菌是一种兼性厌氧菌,环境中氧气浓度不同则其生长和代谢特性也会有所不同。在拟干酪乳杆菌发酵产乳酸的过程中提供不同的氧气量,发现微量的通气在发酵前期对生物量的积累、葡萄糖的消耗和乳酸的产生都没有明显的影响,但在发酵后期,随着通气量的增大,对拟干酪乳杆菌生长的抑制作用增强。当通气量增至0.5 vvm(即air volume/culture volume/min,表示通气比)时,在整个发酵周期内都对拟干酪乳杆菌有明显的抑制作用。适量的通气量虽然会抑制生物量的积累,但是可以促进拟干酪乳杆菌对葡萄糖的利用,在通气量为0.1 vvm时发酵48 h,乳酸的产量高达166.45 g·
温度通过影响蛋白质、核酸等生物大分子的结构和功能、细胞结构及胞内酶的活性等来影响微生物的生长、繁殖和新陈代谢,不同的培养温度不仅影响乳酸菌的生长,还影响代谢产物的产量和质
餐厨垃圾中微生物生产乳酸不仅能达到有效处理有机废物的目的,同时还能回收有价值的副产物,但因为参与水解和L‒乳酸产生的酶活性不高并存在与其他脂肪酸相关的酶,导致L‒乳酸产率低、光学纯度不高。通过补加活性污泥和间歇碱性发酵的方法调节关键酶的活性,在室温下从餐厨垃圾中获得了光学纯的L‒乳酸,并且使乳酸产率提高了近3
铁作为微生物的营养元素和高效催化剂,能改善厌氧消化中的微生物酶活性,促进发酵底物的水

图3 零价铁和氧化铁在餐厨垃圾厌氧发酵产乳酸过程中的作用机
Fig.3 Mechanism of zero valent iron and iron oxide in lactic acid production by anaerobic fermentation of food wast
除了铁离子,C
此外,总固体(TS)含量也会影响餐厨垃圾发酵中挥发性脂肪酸和乳酸的产生。研究表明,在最佳条件下,TS质量浓度从50 g·
餐厨垃圾产乳酸发酵液成分复杂,除乳酸外,发酵液中还包括菌体、残糖、蛋白质、色素、无机盐、副产物有机酸及未转化的淀粉等,这些杂质的存在为后续乳酸的分离和提纯带来了很大的困难,影响着乳酸的产量及质量。发酵液分离和提纯的成本在实际生产中占到了总生产成本的50%~60%,是制约乳酸工业化生产的瓶颈和难点所

图4 乳酸的提取纯化工艺流
Fig.4 Flow chart of lactic acid extraction and purificatio
该流程成熟且易于控制,但也存在流程较长、操作单元多而复杂、原料消耗多、副产物多、产品回收率低和环境污染等问题。为了有效解决上述问题,需进一步探索低成本、高效率的分离和提纯工艺,以提高产品收率和纯度。目前,国内新型的乳酸分离技术主要有离子交换法、酯化水解法、萃取法、分子蒸馏法及膜分离法等。
离子交换技术是生物技术中极具发展前景的下游加工方法之一,具有选择性好、条件温和、操作简单、产品分离省时省力等特点,得到的产品浓度和纯度合理,能从发酵液中原位提取离子源产物,并除去发酵过程中潜在的抑制
利用酯化水解法可获得精品级乳酸,具有产品质量好、生产成本低、色度低且热稳定性高的特点。该方法将乳酸与甲醇等醇类物质在催化剂作用下反应生成乳酸酯,经蒸馏提纯、水解后可得到高纯度的乳酸。精馏塔的使用可以提高酯化率和水解效率。向餐厨垃圾发酵液中加入氨水以调节pH值,然后将得到的乳酸铵直接与丁醇反应6 h制备乳酸丁酯,酯化率为87.7%,并以SnCl2改性的阳离子交换树脂代替硫酸作为催化剂,以中性乳酸铵代替原来的乳酸作为起始原料,既消除了反应器的腐蚀,又避免了副产物钙盐的生成。然后,对乳酸丁酯进行精馏,纯化后的乳酸丁酯在阳离子交换树脂
然而,酯化反应受化学平衡的限制,产率低,难以实现工业化应用。将反应蒸馏、催化反应和渗透汽化等过程集成技术与酯化水解法相结合,强化传质过程,从体系中及时脱除产物水,可提高反应转化率和产品的收率与品
萃取法是提取化工产品的主要方法之一,根据相似相溶的原理,将适当的溶剂加入发酵体系,把乳酸萃取到萃取相进行分离和提纯,再经反萃取过程得到最终产品,主要包括溶剂萃取、膜萃取、盐析萃取和反应萃取等。超声波溶剂萃取是一种新兴的乳酸回收方法,以乙酸乙酯为萃取剂从乳酸细菌培养基(MRS培养基)、混合餐厨垃圾水解物和烘焙废物的发酵液中提取乳酸,乳酸回收质量浓度可达400~500 g·
然而,由于萃取剂大多具有一定的毒性,影响发酵菌种的活性,并且生产过程不易控制,溶剂回收成本高,因此该技术目前仅停留在实验室阶
分子蒸馏,也称短程蒸馏,是在高真空度条件下进行的非平衡连续蒸馏过程,特别适用于分离低挥发度、高分子量、高沸点、高黏度、热敏性和具有生物活性的物料,并且能有效降低热分解的危害,避免使用大量的有毒溶
总之,分子蒸馏技术提取乳酸工艺简单、步骤少且产品纯度高,但产品单程收率低,一次性投资大,并且只能对乳酸产品进行深加工,不能直接从发酵液中获得乳酸。在某种程度上该方法可作为从粗乳酸制备高品质乳酸的有效工艺。
膜分离是利用膜的选择透过性,在膜两侧一定推动力的作用下,使原料中的某种组分选择性地透过膜,从而使混合物得以分离,达到分离、提纯的目的。常用的膜分离法有微滤、纳滤、反渗透和电渗析等。膜分离技术应用于乳酸分离提纯主要包括发酵液的澄清除杂和乳酸精

图5 用于乳酸分离和纯化的一体化膜工
Fig.5 Integrated membrane process for separation and purification of lactic aci
虽然膜分离法能耗低,能够在一定程度上提高L‒乳酸产品的质量,但是膜成本高、膜通量衰减、膜堵塞、膜污染等问题限制了该技术在工业化生产上的应用。可以看出,新型乳酸分离技术与传统工艺相比,虽然效率大大提高,但是操作过程相对复杂,实际应用时还需与其他技术相结合,不断研究与改善乳酸的提取和纯化工艺仍是乳酸发酵工业的重点。
未来对于餐厨垃圾发酵产乳酸研究应从以下几个方面开展:
(1)筛选高效乳酸菌株。生物合成纤维素酶的活力较低,降低了餐厨垃圾原料的利用率。通过基因工程和代谢工程等技术对现有菌种进行改造,选育出性状优良,能利用多种糖类、营养要求简单且耐酸能力强的产乳酸菌种,提高菌体的发酵效率。此外,餐厨垃圾营养成分复杂,单一菌种由于各自特点无法充分利用垃圾中的有用成分,因此采用多种菌株联合培养发酵的方法可有效提高原料的转化率和乳酸产量。
(2)研制高效发酵产乳酸反应器。发酵产乳酸反应器直接影响着餐厨垃圾产乳酸的效果。通过结构和功能的改变,设计和研发新型高效乳酸发酵设备,提高餐厨垃圾有机物的发酵产率和发酵速度,实现乳酸规模化生产,是未来餐厨垃圾发酵产乳酸的主要研究方向。
(3)发酵体系中微生物体内还原力调控。餐厨垃圾发酵体系中多种微生物共存调控通常导致乳酸菌胞内烟酰胺腺嘌呤二核苷酸处于匮乏状态,用于乳酸合成的还原力不足,碳代谢流流向及其通量调控失衡,多种有机酸并存,从而无法实现发酵产乳酸代谢的最大化和快速化。因此,在餐厨垃圾发酵产乳酸过程中,通过调控产乳酸微生物体内烟酰胺腺嘌呤二核苷酸的再生以实现乳酸高效生产仍是餐厨垃圾发酵产乳酸研究的重点与难点。
(4)发酵产物的提取和纯化。为了获得高价值的乳酸产品,浓缩、分离和纯化是餐厨垃圾发酵产乳酸下游的必要步骤。迄今为止,研究了许多回收乳酸的技术。然而,由于厌氧发酵液的复杂性以及乳酸与挥发性脂肪酸(VFAs)的相似特性,从发酵液中原位回收纯乳酸仍然有困难。未来仍需要研究高效的乳酸提取与纯化工艺,并对现有提取工艺进行优化,如综合利用集成分子蒸馏及膜技术等,同时进行生命周期和技术经济评估,实现高效、经济、绿色的乳酸分离纯化。
作者贡献声明
冯雷雨:图表绘制以及论文写作。
袁飞怡:论文写作。
刘 峰:论文的修改及质量控制。
王婷婷:图表绘制。
陈银广:资助项目的获取,论文的修改及质量控制。
参考文献
WU Yongchun, XU Lianfeng. Analysis of the barrier factors of municipal solid waste classification recycling[J]. Advanced Materials Research, 2013, 726: 2618. [百度学术]
许晓锋, 林琦. 我国餐厨垃圾资源化处理技术现状及建议措施[J]. 环境与发展, 2020, 32(11): 73. [百度学术]
XU Xiaofeng, LIN Qi. Food waste resource treatment technology status and proposed measures in China[J]. Environment and Development, 2020, 32(11): 73. [百度学术]
ZHANG Wenjuan, LI Xiang, ZHANG Ting, et al. High-rate lactic acid production from food waste and waste activated sludge via interactive control of pH adjustment and fermentation temperature[J]. Chemical Engineering Journal, 2017, 328: 197. [百度学术]
KWAN T H, HU Yunzi, LIN C S K. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production[J]. Journal of Cleaner Production, 2018, 181: 72. [百度学术]
YOUSUF A, BASTIDAS-OYANEDEL J R, SCHMIDT J E. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste[J]. Waste Management, 2018, 77: 516. [百度学术]
ZHANG Wenjuan, XU Xianbao, YU Pingfeng, et al. Ammonium enhances food waste fermentation to high-value optically active L-lactic acid[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 669. [百度学术]
WANG Ying, TASHIRO Y, SONOMOTO K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits[J]. Journal of Bioscience and Bioengineering, 2015, 119(1): 10. [百度学术]
NARAYANAN N, ROYCHOUDHURY P K, SRIVASTAVA A. L(+)lactic acid fermentation and its product polymerization[J]. Electronic Journal of Biotechnology, 2004, 7(2): 167. [百度学术]
ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits[J]. Journal of Biotechnology, 2011, 156(4): 286. [百度学术]
ABDEL-RAHMAN M A, TASHIRO Y, ZENDO T, et al. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1039. [百度学术]
DE OLIVERIRA R A, KOMESU A, ROSSELL C E V, et al. Challenges and opportunities in lactic acid bioprocess design: from economic to production aspects[J]. Biochemical Engineering Journal, 2018, 133: 219. [百度学术]
CHEN Hao, CHEN Bo, SU Zihang, et al. Efficient lactic acid production from cassava bagasse by mixed culture of Bacillus coagulans and lactobacillus rhamnosus using stepwise pH controlled simultaneous saccharification and co-fermentation[J]. Industrial Crops and Products, 2020, 146:112175. [百度学术]
AJALA E O, OLONADE Y O, AJALA M A, et al. Lactic acid production from lignocellulose: a review of major challenges and selected solutions[J]. ChemBioEng Reviews, 2020, 7(2): 38. [百度学术]
李陆杨, 朱林峰, 漆新华. 生物质及其衍生糖类制备乳酸的研究进展[J]. 农业资源与环境学报, 2017, 34(4): 309. [百度学术]
LI Luyang, ZHU Linfeng, QI Xinhua. Research progress in the preparation of lactic acid from biomass and its derived sugars[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 309. [百度学术]
ALTAF M, VENKATESHWAR M, SRIJANA M, et al. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources[J]. Journal of Applied Microbiology, 2007, 103(2): 372. [百度学术]
REDDY G, ALTAF M, NABEENA B J, et al. Amylolytic bacterial lactic acid fermentation: a review[J]. Biotechnology Advances, 2008, 26(1): 22. [百度学术]
王丹丹, 吴畏. 餐厨垃圾发酵制乳酸技术发展历程回顾与展望[C]// 中国环境科学学会学术年会. 北京: 中国环境科学学会, 2012: 2399-2404. [百度学术]
WANG Dandan, WU Wei. Review and prospect of the development process of lactic acid production technology by fermentation of food waste[C]// Annual Academic Conference of Chinese Society of Environmental Sciences. Beijing: Chinese Society of Environmental Sciences, 2012: 2399-2404. [百度学术]
PEINEMANN J C, DEMICHELIS F, FIORE S, et al. Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste[J]. Bioresource Technology, 2019, 289:121631. [百度学术]
CHACON M G, IBENEGBU C, LEAK D J. Simultaneous saccharification and lactic acid fermentation of the cellulosic fraction of municipal solid waste using Bacillus smithii[J]. Biotechnology Letters, 2020, 43(3): 667. [百度学术]
RAWOOF S A A, KUMAR P S, DEVARAJ K, et al. Enhancement of lactic acid production from food waste through simultaneous saccharification and fermentation using selective microbial strains[J]. Biomass Conversion and Biorefinery, 2020. DOI:10.1007/s13399-020-00998-2. [百度学术]
PLEISSNER D, DEMICHELIS F, MARIANO S, et al. Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste[J]. Journal of Cleaner Production, 2017, 143: 615. [百度学术]
王旭明, 汪群慧, 马鸿志, 等. 用乳酸细菌从有机废弃物生产乳酸[J]. 现代化工, 2003(11): 50. [百度学术]
WANG Xuming, WANG Qunhui, MA Hongzhi, et al. Use lactic acid bacteria to produce lactic acid from organic waste[J]. Modern Chemical Industry, 2003(11): 50. [百度学术]
FENG Kai, LI Huan, ZHENG Chengzhi. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste[J]. Bioresource Technology, 2018, 270: 180. [百度学术]
BRUNO-BARCENA J M, RAGOUT A L, CORDOBA P R, et al. Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems[J]. Applied Microbiology and Biotechnology, 1999, 51(3): 316. [百度学术]
FAN Rong, EBRAHIMI M, CZERMAK P. Anaerobic membrane bioreactor for continuous lactic acid fermentation[J]. Membranes, 2017, 7(2). DOI: 10.3390/membranes7020026. [百度学术]
WEE Y J, KIM J N, RYU H W. Biotechnological production of lactic acid and its recent applications[J]. Food Technology and Biotechnology, 2006, 44(2): 163. [百度学术]
朱化雷, 高大成, 孙启梅, 等. 原位分离技术应用于乳酸发酵的研究进展[J]. 当代化工, 2020, 49(9): 1969. [百度学术]
ZHU Hualei, GAO Dacheng, SUN Qimei, et al. Research progress of in-situ separation technology applied to lactic acid fermentation[J]. Contemporary Chemical, 2020, 49(9): 1969. [百度学术]
TEJAYADI S, CHERYAN M. Lactic-acid from cheeese whey permeate-productivity and economics of a continuous membrane bioreactor[J]. Applied Microbiology and Biotechnology, 1995, 43(2): 242. [百度学术]
ASENJO J A, ANDREWS B A. Aqueous two-phase systems for protein separation: phase separation and applications[J]. Journal of Chromatography A, 2012, 1238: 1. [百度学术]
TANG Jialing, WANG Xiaochang, HU Yisong, et al. Dynamic membrane-assisted fermentation of food wastes for enhancing lactic acid production[J]. Bioresource Technology, 2017, 234: 40. [百度学术]
LIN Jianping, ZHOU Maohong, ZHAO Xiaowei, et al. Extractive fermentation of L-lactic acid with immobilized Rhizopus oryzae in a three-phase fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(5): 369. [百度学术]
ZHAO Zijian, XIE Xiaona, WANG Zhi, et al. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6): 645. [百度学术]
WANG Jianfei, HUANG Jiaqi, LAFFEND H, et al. Optimization of immobilized Lactobacillus pentosus cell fermentation for lactic acid production[J]. Bioresources and Bioprocessing,2020, 7(1). DOI:10.1186/s40643-020-00305-x. [百度学术]
GAO M T, SHIMAMURA T, ISHIDA N, et al. Fermentative lactic acid production with a metabolically engineered yeast immobilized in photo-crosslinkable resins[J]. Biochemical Engineering Journal, 2009, 47(1/3): 66. [百度学术]
SHEN Xueliang, XIA Liming. Lactic acid production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii[J]. World Journal of Microbiology & Biotechnology, 2006, 22(11): 1109. [百度学术]
吴天飞, 潘建洪, 方从申, 等. 固定化细胞技术应用进展[J]. 浙江化工, 2020, 51(3): 10. [百度学术]
WU Tianfei, PAN Jianhong, FANG Congshen, et al. Application progress of immobilized cell technology[J]. Zhejiang Chemical Industry, 2020, 51(3): 10. [百度学术]
唐开宇, 宋喜军, 高大成, 等. 乳酸连续化发酵进展[J]. 化学与生物工程, 2006(11): 4. [百度学术]
TANG Kaiyu, SONG Xijun, GAO Dacheng, et al. Progress in continuous fermentation of lactic acid[J]. Chemical and Biological Engineering, 2006(11): 4. [百度学术]
ABDEL-RAHMAN M A, TASHIRO Y, SONOMOTO K. Recent advances in lactic acid production by microbial fermentation processes[J]. Biotechnology Advances, 2013, 31(6): 877. [百度学术]
赵鹏, 黄霞. 利用可再生资源及有机废物发酵生产乳酸的研究进展[J]. 食品与发酵工业, 2001(4): 60. [百度学术]
ZHAO Peng, HUANG Xia. Research progress in fermentation and production of lactic acid by using renewable resources and organic waste[J]. Food and Fermentation Industry, 2001(4): 60. [百度学术]
WANG Yongze, LI Kunpeng, HUANG Feng, et al. Engineering and adaptive evolution of Escherichia coli W for L-lactic acid fermentation from molasses and corn steep liquor without additional nutrients[J]. Bioresource Technology, 2013, 148: 394. [百度学术]
鲁泓鹰, 何虎 ,刘枣,等. 木糖发酵生产高纯度D‒乳酸大肠杆菌工程菌LHY02的构建[J]. 中国生物工程杂志, 2014, 34(12):91. [百度学术]
LU Hongying, HE Hu, LIU Zao, et al. Engineering of an Escherichia coli strain LHY02 for production of optically pure D-lactic acid from xylose[J]. China Biotechnology, 2014, 34(12): 91. [百度学术]
KWAN T H, HU Yunzi, LIN C S K. Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota[C]// International Conference on Solid Waste-Knowledge Transfer for Sustainable Resource Management (ICSWHK). New York:Elsevier, 2016: 129-136. [百度学术]
TASKIN M, ESIM N, ORTUCU S. Efficient production of L-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61[J]. Food and Bioproducts Processing, 2012, 90(C4): 773. [百度学术]
JIN B, HUANG L P, LANT P. Rhizopus arrhizus: a producer for simultaneous saccharification and fermentation of starch waste materials to l(+)-lactic acid[J]. Biotechnology Letters, 2003, 25(23): 1983. [百度学术]
SHAHRI S Z, VAHABZADEH F, MOGHAREI A. Lactic acid production by loofah-immobilized Rhizopus oryzae through one-step fermentation process using starch substrate[J]. Bioprocess and Biosystems Engineering, 2020, 43(2): 333. [百度学术]
姜旭, 王丽敏, 张桂敏, 等. 基因工程菌发酵生产L‒乳酸研究进展[J]. 生物工程学报, 2013, 29(10): 1398. [百度学术]
JIANG Xu, WANG Limin, ZHANG Guimin, et al. Research progress on fermentation of genetically engineered bacteria to produce L-lactic acid[J]. Journal of Bioengineering, 2013, 29(10): 1398. [百度学术]
ZHANG Qin, ZHANG Liang, DING Zhongyang, et al. Metabolic engineering of wild acid-resistant yeast for L-lactic acid production[J]. Chinese Journal of Biotechnology, 2011, 27(7): 1024. [百度学术]
NANCIB A, NANCIB N, BOUDRANT J. Production of lactic acid from date juice extract with free cells of single and mixed cultures of Lactobacillus casei and Lactococcus lactis[J]. World Journal of Microbiology & Biotechnology, 2009, 25(8): 1423. [百度学术]
THAKUR A, PANESAR P S, SAINI M S. L(+)-lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources[J]. Waste and Biomass Valorization, 2019, 10(5): 1119. [百度学术]
OHKOUCHI Y, INOUE Y. Impact of chemical components of organic wastes on L(+)-lactic acid production[J]. Bioresource Technology, 2007, 98(3): 546. [百度学术]
ZHANG Z Y, JIN B, KELLY J M. Production of lactic acid and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources[J]. World Journal of Microbiology & Biotechnology, 2007, 23(2): 229. [百度学术]
TANG Jialing, WANG Xiaochang, HU Yisong, et al. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula[J]. Bioresource Technology, 2017, 224: 544. [百度学术]
BUHLMANN C H, MICKAN B S, TAIT S, et al. Lactic acid from mixed food wastes at a commercial biogas facility: effect of feedstock and process conditions[J]. Journal of Cleaner Production, 2021, 284:125243. [百度学术]
郑超, 王永红, 章博, 等. 通气对乳酸发酵过程的影响[J]. 工业微生物, 2010, 40(1): 26. [百度学术]
ZHENG Chao, WANG Yonghong, ZHANG Bo, et al. The effect of aeration on the lactic acid fermentation process[J]. Industrial Microorganisms, 2010, 40(1): 26. [百度学术]
熊素玉, 姚新奎, 谭小海, 等. 不同温度及pH条件对乳酸菌生长影响的研究[J]. 新疆农业科学, 2006(6): 533. [百度学术]
XIONG Suyu, YAO Xinkui, TAN Xiaohai, et al. Study on the influence of different temperature and pH conditions on the growth of lactic acid bacteria[J]. Xinjiang Agricultural Sciences, 2006(6): 533. [百度学术]
LI Xiang, CHEN Yinguang, ZHAO Shu, et al. Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity[J]. Water Research, 2015, 70: 148. [百度学术]
CHEN Jiehong, ZHU Cheng, ZHU Jun, et al. Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge[J]. Journal of Cleaner Production, 2020, 242: 118195. [百度学术]
JIN Yong, GAO Ming, LI Hongai, et al. Impact of nanoscale zerovalent iron on volatile fatty acid production from food waste: key enzymes and microbial community[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(10): 3201. [百度学术]
WANG Qiao, FENG Kai, LI Huan. Nano iron materials enhance food waste fermentation[J]. Bioresource Technology, 2020, 315: 123804. [百度学术]
YE Tingting, LI Xiang, ZHANG Ting, et al. Copper (Ⅱ) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: understanding of the corresponding metabolisms, microbial community and predictive functional profiling[J]. Waste Management, 2018, 76: 414. [百度学术]
AHMAD A, BANAT F, TAHER H. Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota[J/OL]. Biomass Conversion and Biorefinery, 2020.https://link.springer.com/article/10.1007/s13399-020-00801-2. [百度学术]
SINGHVI M, ZENDO T, SONOMOTO L. Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects[J]. Applied Microbiology and Biotechnology, 2018, 102(14): 5911. [百度学术]
BESCHKOV V N. Ion exchange in downstream processing in biotechnology[J]. Physical Sciences Reviews, 2020, 5(7).DOI:10.1515/psr-2018-0066. [百度学术]
ZHOU J, BI W, ROW K H. Purification of lactic acid from fermentation broth by spherical anion exchange polymer[J]. Journal of Applied Polymer Science, 2011, 120(5): 2673. [百度学术]
GONZALEZ M I, ALVAREZ S, RIERA F A, et al. Purification of lactic acid from fermentation broths by ion-exchange resins[J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3243. [百度学术]
KOMESU A, WOLF M R W, DE-OLIVEIRA J A R, et al. Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes[J]. Separation and Purification Reviews, 2017, 46(3): 241. [百度学术]
CAO X J, YUN H S, KOO Y M. Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400[J]. Biochemical Engineering Journal, 2002, 11(2/3): 189. [百度学术]
SUNNA X H, WANG Q H, ZHAO W C, et al. Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method[J]. Separation and Purification Technology, 2006, 49(1): 43. [百度学术]
孙启梅, 乔凯, 王领民, 等. 发酵液中乳酸的分离提取研究进展[J]. 化工进展, 2016, 35(9): 2656. [百度学术]
SUN Qimei, QIAO Kai, WANG Lingmin, et al. Research progress on separation and extraction of lactic acid from fermentation broth[J]. Chemical Progress, 2016, 35(9): 2656. [百度学术]
HU Yunzi, KWAN T H, DAOUD W A, et al. Continuous ultrasonic-mediated solvent extraction of lactic acid from fermentation broths[J]. Journal of Cleaner Production, 2017, 145: 142. [百度学术]
KIM Y S, JANG J Y, PARK S J, et al. Dilute sulfuric acid fractionation of Korean food waste for ethanol and lactic acid production by yeast[J]. Waste Management, 2018, 74: 231. [百度学术]
KOMESU A, MACIEL M R W, MACIEL R. Separation and purification technologies for lactic acid: a brief review[J]. Bioresources, 2017, 12(3): 6885. [百度学术]
WANG Z, WU Z, TAN T W. Studies on purification of 1,3-propanediol by molecular distillation[J]. Biotechnology and Bioprocess Engineering, 2013, 18(4): 697. [百度学术]
YU J, ZENG A W, YUAN X G, et al. optimizing and scale-up strategy of molecular distillation for the purification of lactic acid from fermentation broth[J]. Separation Science and Technology, 2015, 50(16): 2518. [百度学术]
KOMESU A, MARTINS P F, LUNELLI B H, et al. Evaluation of lactic acid purification from fermentation broth by hybrid short path evaporation using factorial experimental design[J]. Separation and Purification Technology, 2014, 136: 233. [百度学术]
李卫星,邢卫红. 发酵法乳酸精制技术研究进展[J]. 化工进展, 2009, 28(3): 491. [百度学术]
LI Weixing, XING Weihong. Research progress of lactic acid refining technology by fermentation[J]. Chemical Progress, 2009, 28(3): 491. [百度学术]
LEE H D, LEE M Y, HWANG Y S, et al. Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8301. [百度学术]
汪群慧, 程桂石, 于秀娟, 等. 电渗析法回收厨房垃圾发酵液中的乳酸[J]. 哈尔滨工业大学学报, 2005(3): 314. [百度学术]
WANG Qunhui, CHENG Guishi, YU Xiujuan, et al. Recovery of lactic acid from fermentation broth of kitchen garbage by electrodialysis[J]. Journal of Harbin Institute of Technology, 2005(3): 314. [百度学术]
maglev vehicle-guideway interaction vibration system and stability control based on fuzzy adaptive theory[J]. Computers in Industry, 2019, 108: 197. [百度学术]
刘德军,李小珍,洪沁烨,等.中低速磁浮列车‒大跨度连续梁耦合振动研究[J].铁道工程学报,2017,34(9):53. [百度学术]
LIU Dejun, LI Xiaozhen, HONG Qinye, et al. Coupling vibration study of medium-low speed maglev train-long span continuous bridge system[J]. Journal of Railway Engineering Society, 2017, 34(9):53. [百度学术]
向湘林,龙志强.基于虚拟样机的中速磁浮列车单悬浮架耦合振动特性研究[J].黑龙江大学工程学报,2020,11(4):61. [百度学术]
XIANG Xianglin, LONG Zhiqiang. Coupling vibration characteristics study of maglev single bogie based on virtual prototype [J]. Journal of Engineering of Heilongjiang University, 2020,11(4):61. [百度学术]
刘恒坤,常文森.磁悬浮列车的双环控制[J].控制工程,2007,14(2):198. [百度学术]
LIU Hengkun, CHANG Wensen. Double-loop control of maglev train [J]. Control Engineering of China, 2007, 14(2): 198. [百度学术]
王素梅. 基于向量式有限元的风‒车‒轨‒桥耦合系统动力分析[D]. 杭州: 浙江大学, 2018. [百度学术]
WANG Sumei. Vector form intrinsic finite element method-based dynamic analysis of wind-train-rail-bridge interaction system [D]. Hangzhou: Zhejiang University, 2018. [百度学术]
WANG S M, YAU J D, DUAN Y F, et al. Prediction of crosswind-induced derailment of train-rail-bridge system by vector mechanics [J]. Journal of Engineering Mechanics, 2020, 146 (12): 04020132. [百度学术]
孙友刚,李万莉,林国斌,等.低速磁浮列车悬浮系统动力学建模及非线性控制[J].同济大学学报(自然科学版),2017,45(5):741. [百度学术]
SUN Yougang, LI Wanli, LIN Guobin, et al. Dynamic modeling and nonlinear control research on magnetic suspension systems of low-speed maglev train[J]. Journal of Tongji University(Natural Science), 2017, 45(5):741. [百度学术]