摘要
厌氧消化是有机废弃物处理的重要途径之一。首先,综述了碳基材料对提升有机废弃物厌氧消化产酸和产气的效能作用及主要影响因素;然后,从微生物群落结构和丰度的变化、功能微生物活性的提升(如代谢酶和基因丰度等)、微生物之间电子传递的加速、有毒污染物(如氨氮、有机酸等)毒性的削减以及与铁等物质的协同作用等多角度,探究了碳基材料强化厌氧消化效能的关键作用机制;最后,从高效、经济的厌氧消化系统构建以及耦合工艺的开发等角度进行了展望。
近年来,有机废弃物(包括餐厨垃圾、剩余污泥和农业残留物等)的大量产生及其潜在环境风险逐渐引起广泛关注。有机废弃物往往含有大量的蛋白质、脂质、多糖等有机质和营养物质,是一个巨大而廉价的资源和能源回收原料库。厌氧消化一直是国内外公认的针对有机废弃物处理最有效和经济的技术之
众所周知,厌氧消化归根结底是一个主要通过水解微生物、发酵菌以及甲烷菌等多菌群微生物协同作用完成的生化过程。功能微生物的丰度和活性(如关键基因和代谢酶等)在这个过程中起着决定性作用。然而,有机废弃物中存在的大量有毒有害物质以及消化过程中环境因子(如pH值、氧化还原电位(ORP)等)的急剧变化往往导致系统的不稳定或崩溃,大幅降低厌氧消化的效能。因此,通过预处理(如超声、碱处理等)以及化学药剂(如表面活性剂、强氧化剂等)添加等方式来提升厌氧消化产酸和产甲烷的效
碳基材料(如生物炭、活性炭等)的研究与应用是近年来国内外热点之一。由于碳基材料具有比表面积大、吸附能力强、环境友好以及原料来源广泛等特点,因此在污染物的吸附和降解去除等方面表现出广阔的应用前景。越来越多的研究表明,碳基材料在提升有机废弃物的厌氧消化效能方面有着积极作用。例如,颗粒活性炭可改善铁还原细菌和产甲烷菌之间的营养代谢,提升13%的甲烷产
综述了不同碳基材料与有机废弃物厌氧消化产酸产甲烷等效能的相互作用关系,并从电子传递、有毒污染物抑制削减以及微生物群落结构和代谢活性等角度阐述了碳基材料影响厌氧消化效能的作用机制,最后对碳基材料应用于有机废弃物厌氧消化系统研究进行了展望与总结。
碳基材料在平衡微生物群落的结构和活性、提高系统对有毒物质的缓冲能力等方面具有积极作用,对不同类型有机废弃物厌氧生物处理产生了不同程度的影响(见
生物炭是最为普遍用于有机废弃物厌氧消化提升的碳基材料。王晓
此外,碳基材料还可与Fe等联合使用以进一步提高厌氧消化效能。Liu
对于不同特性的消化底物,不同碳基材料对厌氧工艺的运行效率将产生不同的影响。例如,活性炭对餐厨垃圾厌氧消化产甲烷的效能(提高34%)明显高于对活性污泥系统的效能(提高20%
生物炭、活性炭等碳基材料大多具有表面积大、呈空隙结构等特点,有利于微生物的附着,已被广泛用于细胞固定和微生物的生
Lü
上述研究结果表明,碳基材料不仅可以实现微生物的物理固定化,增加生物质的保留时间,还能改变群落结构,促进功能菌群的富集,进而影响厌氧消化效能。
碳基材料往往负载着大量的微量元素,主要包括铁(Fe)、锰(Mn)、钙(Ca)、钾(K)和镁(Mg)等,可占到碳基材料总组分的1%~30
水解过程一般被认为是有机废弃物厌氧消化处理的限速步骤。Ma
此外,碳基材料还可增强微生物功能基因的丰度,最终提高厌氧发酵效能。Pan
在厌氧消化系统中,互营细菌和产甲烷菌之间的微生物种间电子传递(IET)在氧化有机物和二氧化碳还原为甲烷的过程中起着不可或缺的作用,其中直接种间电子转移(DIET)是厌氧消化系统中IET的主要途径。DIET是一种互营代谢过程,相比种间氢气转移和种间甲酸转移,DIET途径不需要复杂的酶促反应即可完成,具有更高的能量效率。研究表明,DIET的电子转移速度是种间氢气转移的1
DIET作用形式主要分为2种:一种是利用生物成分(细胞色素、导电菌毛等)实现与细胞直接接触,从而进行细胞间的电子转移;另一种是通过导电材料(碳基材料、铁基材料等)介导,构建非生物的导电通道,以减少细胞合成外导电菌毛和c型细胞色素的能量消
碳基材料的投加能够显著提高厌氧消化过程中甲烷的生成速率和产量。一方面,由于碳基材料本身拥有良好的导电性,促进了微生物的直接电子转移过程,进而缩短产甲烷滞后时间。Park

图1 生物炭在厌氧微生物中的DIET机制
Fig.1 DIET mediated by carbon-based materials among anaerobic microorganisms
有机废弃物中往往含有大量的有毒有害物质(如重金属、药物和个人护理用品(PPCPs)等),同时在厌氧消化过程中将产生一些中间抑制剂(如硫化物、NH和VFAs等),对厌氧消化效能和过程稳定性都将产生严重的负面影响。例如,NH的积累会导致高浓度的游离氨产生,对产甲烷古菌产生毒害作
碳基材料由于具有较强的吸附能力以及含有某些特征官能团,因此能够通过吸附和中和等途径提高厌氧消化系统对有毒物质的缓冲能力等(见

图2 碳基材料强化有机废弃物厌氧消化效能的主要机制
Fig.2 Main mechanisms for anaerobic digestion improvement of organic wastes by carbon-based materials
碳基材料的表面结构不仅为NH和H2S等代谢中间物的吸附提供了活性位点,还为有效去除外源有毒污染物提供场
综上,碳基材料可作为厌氧消化系统中一种潜在的“解毒剂”,有效缓解有毒有害污染物对微生物的抑制作用,最终提升厌氧消化效能。
近年来,越来越多的研究表明,与单独碳基材料投加方式相比,通过与其他材料(如铁)的联合使用可产生协同机制来进一步强化有机废弃物的厌氧消化效能。刘波
此外,碳基材料富含含氧的基团,如醌、酯、酚羟基和羧基等,这些特定官能团可提供有利的结合位点,活化过硫酸盐等氧化剂,从而产生自由基以实现对有机污染物的降
针对有机废弃物厌氧消化过程效率低、不稳定等问题,碳基材料可通过增强和平衡微生物群落的结构和活性,加速厌氧微生物之间的电子传递,提高系统对有毒物质的缓冲能力,同时提升微生物的浓度和代谢活性,有效加速物质的分解,促进水解、酸化和甲烷化等过程。此外,碳基材料还能与相关工艺进行耦合协同来促进厌氧消化效能,在有机废弃物的处理处置上展现出广阔的应用前景。虽然添加碳基材料将增加厌氧消化的操作成本,但是可加大甲烷、氢气等资源的产量,有效弥补和解决成本增加的问题。
由于碳基材料原料及制作工艺各异,其性质也表现出显著差异。此外,有机废弃物的成分复杂,其对厌氧消化的抑制因素等也不同。因此,如何构建针对不同有机废弃物厌氧处理的性能优良、经济成本低廉的碳基材料,并实现制作工艺的标准化,降低实际运营成本,将极大影响碳基材料在厌氧处理领域的实际应用。进一步开发与碳基材料兼容的强化耦合工艺,进一步完善碳基材料的回收和再利用系统,从而提升有机废弃物的消化效能和经济成本。基于碳基材料介导厌氧消化过程中微生物群落演替规律、与微生物代谢相关的电子传递途径和机制机理也有待进一步的研究。通过对微生物代谢功能和代谢产物的调控,实现有机废弃物产物的定向转化,将进一步提升有机废弃物的利用价值和经济效益。
作者贡献声明
罗景阳:论文选题,论文框架构思,论文写作与修改。
邵钱祺:数据整理,论文写作与修改。
王 凤:资料收集,论文写作。
方世玉:资料收集,论文写作。
张 乐:资料收集,论文写作,数据校对。
黄文轩:论文框架构思,图形绘制,论文写作与修改。
参考文献
APPELS L, BAEYENS J, DEGREVE J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge [J]. Progress in Energy and Combustion Science, 2008, 34(6): 755. [百度学术]
LIU H B, WANG L, YIN B, et al. Deep exploitation of refractory organics in anaerobic dynamic membrane bioreactor for volatile fatty acids production from sludge fermentation: performance and effect of protease catalysis [J]. Journal of Environmental Management, 2018, 217: 478. [百度学术]
WANG D B, HUANG Y X, XU Q X, et al. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge [J]. Bioresource Technology, 2019, 275: 163. [百度学术]
刘吉宝, 倪晓棠, 魏源送, 等. 微波及其组合工艺强化污泥厌氧消化研究 [J]. 环境科学, 2014, 35(9): 3455. [百度学术]
LIU Jibao, NI Xiaotang, WEI Yuansong, et al. Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes[J]. Environmental Science, 2014, 35(9): 3455 [百度学术]
PENG H, ZHANG Y, TAN D, et al. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion [J]. Bioresource Technology, 2018, 249: 666. [百度学术]
DUAN X, CHEN Y, YAN Y, et al. New method for algae comprehensive utilization: algae-derived biochar enhances algae anaerobic fermentation for short-chain fatty acids production [J]. Bioresource Technology, 2019, 289: 121637. [百度学术]
ZHAO Z, ZHANG Y, WOODARD T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials [J]. Bioresource Technology, 2015, 191: 140. [百度学术]
CHEN S, ROTARU A-E , SHRESTHA P M, et al. Promoting interspecies electron transfer with biochar [J]. Scientific Reports, 2014, 4(1): 5019. [百度学术]
王晓琳. 污泥基生物炭强化污泥厌氧产酸的机理研究 [D].长沙:湖南大学, 2018. [百度学术]
WANG Xiaolin. Effects of sludge biochar on volatile fatty acid production from sludge anaerobic fermentation [D]. Changsha: Hunan University, 2018. [百度学术]
LUO C, LÜ F, SHAO L, et al. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes [J]. Water Research, 2015, 68: 710 [百度学术]
SHARMA P, MELKANIA U. Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli[J]. International Journal of Hydrogen Energy, 2017, 42(30): 18865. [百度学术]
SUNYOTO N M S, ZHU M, ZHANG Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste [J]. Bioresource Technology, 2016, 219: 29. [百度学术]
XU S, HAN R, ZHANG Y, et al. Differentiated stimulating effects of activated carbon on methanogenic degradation of acetate, propionate and butyrate [J]. Waste Management, 2018, 76: 394. [百度学术]
LIU Y, LI Y, GAN R, et al. Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system [J]. Chemical Engineering Journal, 2020, 389: 124510. [百度学术]
LIN R, DENG C, CHENG J, et al. Graphene facilitates biomethane production from protein-derived glycine in anaerobic digestion [J]. iScience, 2018, 10: 158. [百度学术]
LIU J, ZHENG J, NIU Y, et al. Effect of zero-valent iron combined with carbon-based materials on the mitigation of ammonia inhibition during anaerobic digestion [J]. Bioresource Technology, 2020, 311: 123503. [百度学术]
ZHANG L, LOH K C. Synergistic effect of activated carbon and encapsulated trace element additive on methane production from anaerobic digestion of food wastes: enhanced operation stability and balanced trace nutrition [J]. Bioresource Technology, 2019, 278:108. [百度学术]
ZHAO Z, LI Y, QUAN X, et al. Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials [J]. Water Research, 2017, 115: 266. [百度学术]
PAN J, MA J, LIU X, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure [J]. Bioresource Technology, 2018, 275: 258. [百度学术]
CHEN Y, YANG Z, ZHANG Y, et al. Effects of different conductive nanomaterials on anaerobic digestion process and microbial community of sludge [J]. Bioresource Technology, 2020, 304: 123016. [百度学术]
LEE K S, WU J F, LO Y S, et al. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor [J]. Biotechnology and Bioengineering, 2004, 87(5) :648. [百度学术]
ZHANG J, WANG Z, WANG Y, et al. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure [J]. Bioresource Technology, 2017, 245:850. [百度学术]
ZHAI S, LI M, XIONG Y, et al. Dual resource utilization for tannery sludge: effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion [J]. Bioresource Technology, 2020, 316: 123903. [百度学术]
章钦, 罗景阳, 操家顺, 等. 生物炭对剩余污泥厌氧发酵产酸的影响 [J]. 环境科技, 2019, 32(1): 1. [百度学术]
ZHANG Qin, LUO Jingyang, CAO Jiashun, et al. Effects of biochar on the volatile fatty acids production during sludge anaerobic fermentation [J]. Environmental Technology, 2019, 32(1): 1. [百度学术]
LU J H, CHEN C, HUANG C, et al. Glucose fermentation with biochar amended consortium: sequential fermentations [J]. Bioresource Technology, 2020, 303: 122933. [百度学术]
XU S, HE C, LUO L, et al. Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester [J]. Bioresource Technology, 2015, 196: 606. [百度学术]
LÜ F, LUO C, SHAO L, et al. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina [J]. Water Research, 2016, 90: 34. [百度学术]
MUMME J, SROCKE F, HEEG K, et al. Use of biochars in anaerobic digestion [J]. Bioresource Technology, 2014,164: 189. [百度学术]
LI W, HE L, CHENG C, et al. Effects of biochar on ethanol-type and butyrate-type fermentative hydrogen productions [J]. Bioresource Technology, 2020, 306: 123088. [百度学术]
LIU Z, LU F, ZHENG H, et al. Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs)[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10619. [百度学术]
LIN R, CHENG J, ZHANG J, et al. Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion [J]. Bioresource Technology, 2017, 239: 345. [百度学术]
CRUZ VIGGI C, SIMONETTI S, PALMA E, et al. Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar [J]. Biotechnology for Biofuels, 2017, 10(1): 303. [百度学术]
高新. 生物炭强化苯酚厌氧降解及甲烷化过程机理研究 [D]. 西安:西安建筑科技大学, 2020. [百度学术]
GAO Xin. Study on the mechanism of enhanced anaerobic degradation and methanogenesis of phenol by biochar addition [D]. Xi’an: Xi’an University of Architecture and Technology, 2020. [百度学术]
YANG S, CHEN Z, WEN Q. Impacts of biochar on anaerobic digestion of swine manure: methanogenesis and antibiotic resistance genes dissemination [J]. Bioresource Technology, 2021, 324: 124679. [百度学术]
MA J, CHEN F, XUE S, et al. Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies [J]. Bioresource Technology, 2021, 325(1): 124697. [百度学术]
于亚梅, 沈雁文, 朱南文, 等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响 [J]. 环境工程学报, 2020, 14: 807. [百度学术]
YU Yamei, SHEN Yanwen, ZHU Nanwen, et al. Effect of electrochemical properties of biochar and graphite on methane production in anaerobic digestion of excess activated sludge [J]. Chinese Journal of Environmental Engineering, 2020, 14:807. [百度学术]
WANG G, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms [J]. Bioresource Technology, 2018, 250: 812. [百度学术]
XIAO Y, YANG H, ZHENG D, et al. Granular activated carbon alleviates the combined stress of ammonia and adverse temperature conditions during dry anaerobic digestion of swine manure [J]. Renewable Energy, 2021, 169: 451. [百度学术]
SHEN Y, FORRESTER S, KOVAL J, et al. Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production [J]. Journal of Cleaner Production, 2017, 167: 863. [百度学术]
ZHANG L, ZHANG J, LOH K C. Activated carbon enhanced anaerobic digestion of food waste: laboratory-scale and pilot-scale operation [J]. Waste Management, 2018, 75: 270. [百度学术]
WATANABE Y, TANAKA K. Innovative sludge handling through pelletization/thickening [J]. Water Research, 1999, 33(15): 3245. [百度学术]
CIMON C, KADOTA P, ESKICIOGLU C. Effect of biochar and wood ash amendment on biochemical methane production of wastewater sludge from a temperature phase anaerobic digestion process [J]. Bioresource Technology, 2020, 297: 122440. [百度学术]
BARCA C, SORIC A, RANAVA D, et al. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review [J]. Bioresource Technology, 2015, 185: 386. [百度学术]
LEE J-Y, LEE S-H, PARK H-D. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors [J]. Bioresource Technology, 2016, 205: 205. [百度学术]
ZHANG J, ZHANG L, LOH K-C , et al. Enhanced anaerobic digestion of food waste by adding activated carbon: fate of bacterial pathogens and antibiotic resistance genes [J]. Biochemical Engineering Journal, 2017, 128: 19. [百度学术]
SHAKOOR M B, YE Z-L, CHEN S. Engineered biochars for recovering phosphate and ammonium from wastewater: a review [J]. Science of the Total Environment, 2021, 779: 146240. [百度学术]
MA J, PAN J, QIU L, et al. Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion [J]. Bioresource Technology, 2019, 293: 122026. [百度学术]
YAN W, ZHANG L, WIJAYA S M, et al. Unveiling the role of activated carbon on hydrolysis process in anaerobic digestion [J]. Bioresource Technology, 2020, 296: 122366. [百度学术]
PAN J, MA J, ZHAI L, et al. Achievements of biochar application for enhanced anaerobic digestion: a review [J]. Bioresource Technology, 2019, 292: 122058. [百度学术]
LÜ F, LIU Y, SHAO L, et al. Powdered biochar doubled microbial growth in anaerobic digestion of oil [J]. Applied Energy, 2019, 247: 605. [百度学术]
QI Q, SUN C, ZHANG J, et al. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: the bioavailability of trace elements and potential direct interspecies electron transfer [J]. Chemical Engineering Journal, 2021, 406: 126833. [百度学术]
CRUZ VIGGI C, ROSSETTI S, FAZI S, et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation [J]. Environmental Science & Technology, 2014, 48(13): 7536. [百度学术]
PARK J-H , KANG H-J, PARK K-H , et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications [J]. Bioresource Technology, 2018, 254: 300. [百度学术]
YAN W, SHEN N, XIAO Y, et al. The role of conductive materials in the start-up period of thermophilic anaerobic system [J]. Bioresource Technology, 2017, 239: 336. [百度学术]
JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: a critical review [J]. Journal of Water Process Engineering, 2019, 32: 100899. [百度学术]
JARRELL K F, SAULNIER M, LEY A. Inhibition of methanogenesis in pure cultures by ammonia, fatty acids, and heavy metals, and protection against heavy metal toxicity by sewage sludge [J]. Canadian Journal of Microbiology, 1987, 33(6): 551. [百度学术]
李淑兰,刘萍,梅自力. 中高温条件下不同碳氮比对鸡粪原料厌氧发酵产气特性的影响 [J] 中国沼气,2018, 36(5):73. [百度学术]
LI Shulan, LIU Ping, MEI Zili. Effect of different C/N on biogas production charateristcs of chicken feces under medium-high temperature [J]. China Biogas, 2018, 36(5):73. [百度学术]
HALE S E, ALLING V, MARTINSEN V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars [J]. Chemosphere, 2013, 91(11): 1612. [百度学术]
SHEN Y, LINVILLE J L, URGUN-DEMIRTAS M, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal [J]. Applied Energy, 2015, 158: 300. [百度学术]
LI J, ZHANG M, YE Z, et al. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge [J]. Journal of Environmental Sciences, 2019, 76: 267. [百度学术]
JANG H-M, CHOI Y-K , KAN E. Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure [J]. Bioresource Technology, 2018, 250: 927. [百度学术]
WANG H, LARSON R A, RUNGE T. Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems [J]. Bioresource Technology Reports, 2019, 7: 100232. [百度学术]
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review [J]. Chemosphere, 2014, 99: 19. [百度学术]
ZHAO L, XIAO D, LIU Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494. [百度学术]
WANG G, GAO X, LI Q, et al. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer [J]. Journal of Hazardous Materials, 2020, 390: 121726. [百度学术]
WANG P, SAKHNO Y, ADHIKARI S, et al. Effect of ammonia removal and biochar detoxification on anaerobic digestion of aqueous phase from municipal sludge hydrothermal liquefaction [J]. Bioresource Technology, 2021, 326: 124730. [百度学术]
CAO X, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285. [百度学术]
刘波, 陈博之, 丁新春, 等. 铁碳联合强化剩余污泥厌氧消化的研究 [J]. 工业水处理, 2020, 40(10): 47. [百度学术]
LIU Bo, CHEN Bozhi, DING Xinchun, et al. Study on iron-carbon combination to enhance the anaerobic digestion of residual sludge [J]. Industrial Water Treatment, 2020, 40(10): 47. [百度学术]
张磊, 郑重, 魏春飞, 等. 铁碳微电解强化污泥厌氧消化的研究 [J]. 中国沼气, 2018, 36(6): 9. [百度学术]
ZHANG Lei, ZHENG Zhong, WEI Chunfei, et al. Study on ferro-carbon micro-electrolysis to enhance anaerobic digestion of sludge [J]. China Biogas, 2018, 36(6): 9. [百度学术]
YANG Y, GUO J, HU Z. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion [J]. Water Research, 2013, 47(17): 6790. [百度学术]
PANG Y, LUO K, TANG L, et al. Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review [J]. Environmental Science and Pollution Research, 2019, 26: 32764. [百度学术]
WANG J, LIAO Z, IFTHIKAR J, et al. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process [J]. Chemosphere, 2017, 185: 754. [百度学术]
ZHU K, WANG X, CHEN D, et al. Wood-based biochar as an excellent activator of peroxydisulfate for Acid Orange 7 decolorization [J]. Chemosphere, 2019, 231: 32. [百度学术]