摘要
为探究海水海砂再生混凝土(SSRAC)力学性能,设计了不同配合比下海水海砂再生混凝土棱柱体试件,并进行了单轴受压应力‒应变全曲线测试。在试验加载应变率1
关键词
由于河砂资源短缺,价格不断上涨,因此我国自20世纪90年代以来在沿海地区开始使用海
将海水海砂与再生骨料组合后制备的混凝土,称为海水海砂再生混凝土(SSRAC,本研究中再生骨料为再生粗骨料)。海水海砂再生混凝土既可以充分利用丰富的海水海砂资源,也可以消纳废弃混凝土,同时减少矿山的开采,具有显著的生态性。海水海砂再生混凝土的力学性能已经引起重
试验所用的再生粗骨料(RCA)粒径为5~25 mm,细骨料为河砂、海砂以及贝壳砂。粗骨料物理指标测试结果如
河砂、海砂以及贝壳砂的级配曲线如

图1 砂骨料级配曲线
Fig.1 Grading curves of sand aggregates
混凝土的水灰比为0.47,依据贝壳含量及再生粗骨料取代率将试块分为9组,其中贝壳含量分为纯海砂、海砂与贝壳砂含量为4∶1的混合砂2组。再生粗骨料取代率为0、50%和100%。棱柱体试件尺寸为100 mm × 100 mm × 300 mm,每组制作6个试件。海水海砂再生混凝土配合比如

图2 试件失效模式
Fig.2 Failure modes of specimens
对所测得的相同试件在相同应变率下的3条试验曲线进行统计分析,得到曲线的均值,如图

图3 NAC、RAC应力‒应变均值曲线
Fig.3 Mean stress-strain curves of NAC and RAC

图4 M‒SSNAC、M‒SSRAC应力‒应变均值曲线
Fig.4 Mean stress-strain curves of M-SSNAC and M-SSRAC

图5 H‒SSNAC、H‒SSRAC应力‒应变均值曲线
Fig.5 Mean stress-strain curves of H-SSNAC and H-SSRAC
应力‒应变曲线的特征指标包括峰值应力、峰值应变和弹性模量(0.5%~30.0%峰值应力对应的割线模量),试验结果如图

图6 NAC、RAC应力‒应变曲线特征指标
Fig.6 Characteristic indices of stress-strain curves of NAC and RAC

图7 M‒SSNAC、M‒SSRAC应力‒应变曲线特征指标
Fig.7 Characteristic indices of stress-strain curves of M-SSNAC and M-SSRAC

图8 H‒SSNAC、H‒SSRAC应力‒应变曲线特征指标
Fig.8 Characteristic indices of stress-strain curves of H-SSNAC and H-SSRAC
由
由
由
特征指标的动态增长因子定义为动态应变率下的特征指标与准静态下的特征指标的比值。

图9 特征指标的动态增长因子
Fig.9 DIF of characteristic indices
对于峰值应变,由
由
利用电子计算机断层扫描(CT)技术(机器型号为NIKON XTH 320/225,旋转速度为120 rpm,电压和电流分别为300 kV和250 mA,切片厚度为1.0 mm),测试了海水海砂再生混凝土内部的孔隙分布。海水海砂再生混凝土样品为边长78 mm的立方体,将扫描的二维图像进行渲染生成体积图像,对海水海砂再生混凝土内部的不同相和孔结构进行了三维重建。

图10 海水海砂再生混凝土孔结构
Fig.10 Pore structures of SSRAC specimens
对于RAC,随着再生粗骨料取代率的增加,孔隙率显著增加,NAC的孔隙率为1.850%,RAC100的孔隙率增加到1.989%,这主要是由于再生粗骨料的加入引入了更多的疏松多孔的界面过渡
加入海水海砂后,贝壳含量的增加可以降低再生混凝土的孔隙率。RAC100、M‒SSRAC100和H‒SSRAC100的贝壳含量依次增加,孔隙率逐渐降低。实际上,现有文
利用现有的3种模型来预测再生混凝土本构曲线,分别来自欧洲规

图11 M‒SSNAC、M‒SSRAC预测曲线与试验结果对比
Fig.11 Comparison between predicted curves and tested results for M-SSNAC and M-SSRAC

图12 H‒SSNAC、H‒SSRAC预测曲线与试验结果对比
Fig.12 Comparison between predicted curves and tested results for H-SSNAC and H-SSRAC
由模型预测曲线与试验曲线的对比可知,对于应力‒应变曲线的上升段,3种模型的预测曲线与试验结果比较吻合。对于下降段,不同模型的预测效果不同。对于M‒SSRAC,由
基于试验数据,同时参考现有文
(1) |
(2) |
选取中国规范模

图13 M‒SSNAC、M‒SSRAC修正模型预测曲线与试验结果对比
Fig.13 Comparison between predicted curves from modified model and tested results for M-SSNAC and M-SSRAC

图14 H‒SSNAC、H‒SSRAC模型预测曲线与试验曲线对比
Fig.14 Comparison between predicted curves from modified model and tested results for H-SSNAC and H-SSRAC
在准静态应力‒应变模型的基础上,考虑特征指标的动态增长因子后,通过修正模型下降段形状系数,可以很好地描述海水海砂再生混凝土在1
(1)海水海砂再生混凝土的峰值应力和弹性模量整体上随着应变率的增大而提高。再生粗骨料取代率对不同组的海水海砂再生混凝土峰值应力和峰值应变影响不同,但弹性模量随着再生粗骨料取代率提高显著降低。
(2)随着再生粗骨料取代率的增加,M‒SSRAC和H‒SSRAC的Dσ呈先降低后增加的趋势;M‒SSRAC和H‒SSRAC的Dε变化一致,呈先降低后增加趋势;M‒SSRAC的DE随再生粗骨料取代率增加呈下降趋势,而H‒SSRAC的DE随再生粗骨料取代率增加基本不变。
(3)随着再生粗骨料取代率的增加,RAC孔隙率显著增加,而海水海砂的加入会降低孔隙率,贝壳含量的增加也可以降低再生混凝土的孔隙率。
(4)现有3种本构模型的预测曲线与应力‒应变曲线的上升段试验结果比较吻合。考虑峰值应力和弹性模量的动态增长因子后,在准静态应力‒应变模型的基础上,通过修正模型下降段形状系数,得到了海水海砂再生混凝土的动态应力‒应变预测曲线。
作者贡献声明
张凯建:试验设计与测试,论文撰写与修改,数据计算。
肖建庄:提出研究思路和试验方法,论文修改,数据校核。
张青天:试验测试,论文修改。
参考文献
XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101. [百度学术]
曹雪晴,张勇,何拥军,等. 中国近海建筑用海砂勘查回顾与面临的问题[J]. 海洋地质与第四纪地质, 2008, 28(3): 121. [百度学术]
CAO Xueqing, ZHANG Yong, HE Yongjun, et al. Retrospect and discussion of surveys for construction sand in China offshore area[J]. Marine Geology & Quaternary Geology, 2008, 28(3): 121. [百度学术]
TENG J G, YU T, DAI J G, et al. FRP composites in new construction: current status and opportunities[C]//Proceedings of the 7th National Conference on FRP Composites in Infrastructure. Hangzhou:[s.n.], 2011: 58. [百度学术]
肖建庄,张凯建,曹万林,等. 考虑时变可靠度的再生混凝土结构设计[J]. 建筑结构学报, 2020, 41(12): 17. [百度学术]
XIAO Jianzhuang, ZHANG Kaijian, CAO Wanlin, et al. Time-dependent reliability-based design of recycled aggregate concrete structures[J]. Journal of Building Structures, 2020, 41(12): 17. [百度学术]
肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008. [百度学术]
XIAO Jianzhuang. Recycled concrete[M]. China Architecture and Building Press, 2008. [百度学术]
XIAO J Z, ZHANG Q T, ZHANG P, et al. Mechanical behavior of concrete using seawater and sea-sand with recycled coarse aggregates[J]. Structural Concrete, 2019, 20(5): 1631. [百度学术]
GUO M, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 117339. [百度学术]
ASTM. Standard practice for the preparation of substitute ocean water: D1141―98 [S]. Philadelphia: ASTM, 2013. [百度学术]
中华人民共和国住房和城乡建设部. 海砂混凝土应用技术规范: JGJ 206―2010 [S]. 北京: 中国建筑工业出版社, 2010. [百度学术]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for application of sea sand concrete: JGJ 206―2010 [S]. Beijing: China Architecture and Building Press, 2010. [百度学术]
The International Organization for Standardization. Fine and coarse aggregates for concrete, determination of the particle mass-per-volume and water absorption,pycnometer method: ISO 7033∶1987[S]. New York:The International Organization for Standardization, 2014. [百度学术]
XIAO J Z, ZHANG K J, AKBARNEZHAD A. Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading[J]. Journal of Cleaner Production, 2018, 181: 753. [百度学术]
XIAO J Z, LI L, SHEN L M, et al. Compressive behaviour of recycled aggregate concrete under impact loading[J]. Cement and Concrete Research, 2015, 71: 46. [百度学术]
SURYAVANSHI A, SCANTLEBURY J, LYON S. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717. [百度学术]
MEHTA P K, MONTEIRO P J M. Concrete : microstructure, properties, and materials[M]. Upper Saddle River: Prentice-Hall, 2013. [百度学术]
British Standards Institution. Eurocode 2, design of concrete structures, part 1-1: general rules and rules for buildings[M]. London: British Standards Institution, 2004. [百度学术]
XIAO J Z, LI J B, ZHANG C. Mechanical properties of recycled aggregate concrete under uniaxial loading[J]. Cement and Concrete Research, 2005, 35(6): 1187. [百度学术]
中华人民共和国住房和城乡建设部.混凝土结构设计规范: GB 50010―2010[S]. 北京: 中国建筑工业出版社, 2010. [百度学术]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB 50010―2010 [S]. Beijing: China Architecture and Building Press, 2010. [百度学术]
李龙,肖建庄,黄凯文. 再生混凝土力学性能的应变率敏感性数值模拟[J]. 东南大学学报(自然科学版), 2017, 47(4): 776. [百度学术]
LI Long, XIAO Jianzhuang, HUANG Kaiwen. Numerical simulation on strain-rate sensitivity of mechanical properties of recycled aggregate concrete[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(4): 776. [百度学术]