摘要
通过13种不同配合比的工程弃土复配,研究了不同复配弃土在挤出过程中的可打印性,同时对掺入河砂和再生粉的土样分别进行无侧限抗压强度试验和直剪试验,探讨了河砂和再生粉作为工程弃土掺料的可行性。试验结果表明,黏质弃土的掺配比例会影响复配弃土的打印形态,当黏土掺配比例达50%时,打印效果良好。再生粉的掺入能够提高土体的无侧限抗压强度和弹性模量,超过这一范围后,再生粉的高吸水性会严重影响土体的黏聚性,进而导致强度降低,弹性变形阶段维持时间减少。在保证工程弃土强度改良和满足可挤出性的前提下,建议再生粉掺量为5%,此时土体无侧限抗压强度可提升22.5%,而河砂的掺入会整体降低弃土无侧限抗压强度和弹性模量,呈逆骨架效应。在减少环境污染和推进智能土制建筑方面,利用3D打印挤出成型技术,生产满足不同工况要求的工程弃土3D打印砖具有较高的应用价值和潜力。
据2017年《中国建筑节能年度发展研究报告》提供的数据估算,中国现每年约有(18~20)×1
以建筑渣土作为原材料可高效生产能满足不同工况需求的均质生态
因此,本文设计了13种不同配合比的复配弃土,通过室内挤出成型3D打印试验、无侧限抗压强度试验和直剪试验,研究了黏质土掺量和不同掺料对工程弃土螺杆挤出3D打印过程中可挤出性和力学性能的影响,同时分析了不同掺料对土样黏聚力的内在作用,探讨了河砂和再生粉作为工程弃土掺料的可行性。并通过实体建模,验证了不同掺料对工程弃土挤出打印过程中的应力分布影响规律,以期为工程弃土的资源化利用提供一定的应用基础。
试验所用工程弃土取自河南省许昌市不同工地开挖基坑,分别为被标记为XCY、XCB,后缀Y代表取自粉质砂性土层,B代表取自黏质土层,将土样风干碾碎过1 mm筛备用。由于工程弃土成分复杂,可能会掺杂不同的砂石或建筑废弃物,因此考虑将河砂和再生粉作为取代

图1 试验用原材料
Fig.1 Raw materials

图2 再生粉和河砂的颗粒级配
Fig.2 Size distribution of recycled powder and river sand
工程弃土挤出成型打印过程由PCCER型打印系统完成,该系统由控制器、送料仓、挤出螺杆、受压密实段和可定制化的挤出头组成。打印过程设定螺杆转速为15 r·mi

图3 弃土复配挤出打印过程
Fig.3 Extrusion process of construction spoil
无侧限抗压强度是反映土体改良效果的重要指
(1) |
式中:为弃土试样的无侧限抗压强度;为受压破坏后的最大荷载;为试样的横截面积。
弃土的直剪试验按照《公路土工试验规程》(JTG 3430—2020)中的室内快速剪切试验方法进行,用环刀对击实和挤出处理后的圆柱土样切割成直径61.8 mm,高20.0 mm的标准试样,每组预留4个平行试样,置入应变控制式直剪仪中进行试验,使试样以0.8~1.2 mm·mi
选取M3和AR1作为对比试样进行扫描电镜试验,将挤出后弃土砖经自然风干后分别用液氮 (-190 ℃)对断面1 c
根据螺杆挤岀式3D打印成型设备的结构特点和成型过程,利用COMSOL多物理场耦合优势对泥料的挤出打印过程实施仿真分析。在忽略绞刀重力及惯性力影响情况下,分别对流场稳定及低雷诺层流进行假设,根据不同材料属性输入参数。铰刀及筒壁均为钢结构,密度7 850 kg·

图4 挤出机结构及网格划分示意图
Fig.4 Extrusion morphology of spoil with different mixing ratio

图5 不同复配比例下弃土打印形态
Fig.5 Extrusion morphology of spoil with different mixing ratio
吸水率是影响土体可塑性的重要指标,当土体含水率在液塑限之间且适宜时,才具有较高的可塑性,便于弃土的挤出成

图6 不同掺料土样达到塑限所需用水量(以3 kg土样计算)
Fig.6 Water required for spoil with different amount of admixture to reach plastic limit (calculated by 3kg spoil)

图7 不同土样无侧限受压破坏典型形态
Fig.7 Typical failure modes of different spoil samples under unconfined compression

图8 不同复配弃土无侧限抗压强度‒应变曲线
Fig.8 Strain curves of unconfined compressive strength under different admixtures

图9 不同掺量对弃土无侧限抗压强度的影响
Fig.9 Effect of admixture content on unconfined compressive strength of spoil

图10 不同试样在达到峰值强度时所对应的应变值变化
Fig.10 Changes of strain value of different specimens when reach the peak strength

图11 不同处理方式和掺量下弃土黏聚力和内摩擦角变化
Fig.11 Changes of cohesive force and the angle of internal friction of spoil with different treatment methods and admixture

图12 不同掺量对弃土试样弹性模量的影响曲线
Fig.12 Influence curve of different admixtures on elastic modulus of spoil

图13 不同配比的挤出弃土砖SEM图像
Fig.13 SEM images of extruded spoil bricks with different proportions

图14 M3挤出过程应力分布图
Fig.14 Stress distribution in M3 extrusion process

图15 不同掺料对弃土挤出应力影响曲线
Fig.15 Extrusion stress distribution curve of spoil with different content
(1)以挤出成型3D打印技术生产满足不同工况要求的工程弃土砖是可行的,黏质土可有效改善打印过程中粉质砂土颗粒之间松散不成型,黏聚力差的缺陷,其掺配比例会影响复配弃土的挤出打印效果。当黏质土掺配比例达50%时,打印效果良好,优化弃土复配比例有利于改善弃土工程性质。在弃土复配中掺入0~20%的河砂后,打印弃土砖表面均无明显裂缝。而再生粉的掺入则存在最优掺量,当再生粉掺量高于5%时则会降低工程弃土的可挤出性,出现明显开裂现象,且掺量越高可挤出性越差。
(2)在弃土复配过程中加入合适范围的再生粉可以提高土体的无侧限抗压强度和弹性模量,不同的处理方式也会对弃土的工程性质产生影响。当再生粉掺量为5%时,经击实和挤出方式处理后弃土的弹性模量增幅分别达17.0%和104.1%。弃土经挤出处理后的压实度更大,土颗粒以及掺料颗粒之间接触更加紧密,试样抵抗变形的能力增强。但是再生粉含量过高会导致弃土砖打印形态较差,弃土弹性变形阶段维持时间减少,在保证工程弃土强度改良效果和满足可挤出性的前提下,建议再生粉掺量为5%。
(3)河砂的掺入对弃土工程性质改良效果较差,掺入河砂会降低土体无侧限抗压强度和弹性模量,呈逆骨架效应,经击实和挤出方式处理后弃土的弹性模量最大降低幅度分别达45.8%和35.3%。掺入河砂后的弃土试样在受压变形时弹性阶段持续时间较长,无侧限抗压强峰值时所对应的应变值随着河砂掺量的增加呈先减小再增大的趋势。
(4)再生粉可作为掺料在一定范围内有效改善弃土的工程性质。再生粉比表面积较大,在工程弃土复配中可作为一种微集料填充在土颗粒间孔隙处,提升土体结构密实程度。同时,再生粉与水结合也激发了再生粉的部分火山灰活性,形成附着在颗粒表面的类胶结物质,将不同的骨架颗粒黏结在一起形成整体,进而提升复配弃土强度。
(5)弃土螺杆挤出3D打印模拟中,筒壁和挤出口交界处所受应力较大。河砂的掺入使得土体相对含水量增大,使得弃土黏聚力增大,内摩擦角减小,进而使得挤出口部位压力减小,出口部分筒壁所受应力减小,而再生粉掺入会导致土体颗粒间摩擦系数增大,导致弃土在打印过程中压力增大,筒壁所受应力也相应增大,与试验结果吻合较好。
作者贡献声明
柏美岩:试验,数据收集与处理,分析与撰写论文。
肖建庄:提出研究思路,指导研究方案和论文撰写,审阅及修订论文。
高 琦:数据收集与处理,审阅及修订论文。
沈剑羽:试验,数据收集与处理,审阅及修订论文。
侯逸青:试验,数据收集与处理。
王浩通:数据收集与处理。
马亚辉:数据收集与处理。
参考文献
李建明,王志刚,张长伟,等.生产建设项目弃土弃渣特性及资源化利用潜力评价[J].水土保持学报,2020,34(2):1. [百度学术]
LI Jianming, WANG Zhigang, ZHANG Changwei, et al. Evaluation of characteristics and resource utilization potential of residues in production and construction projects[J]. Journal of Soil and Water Conservation,2020,34(2):1. [百度学术]
YUAN F, SHEN L Y, LI Q M. Emergy analysis of the recycling options for construction and demolition waste[J]. Waste Management, 2011, 31(12):2503. [百度学术]
AUBERT J E, MAILLARD P, MOREL J C, et al. Towards a simple compressive strength test for earth bricks[J]. Materials and Structures, 2016(49):1641. [百度学术]
肖建庄,沈剑羽,高琦,等.工程弃土现状与资源化创新技术[J].建筑科学与工程学报,2020,37(4):1. [百度学术]
XIAO Jianzhuang, SHEN Jianyu, GAO Qi, et al. Current situation and innovative technology for recycling of engineering waste soil[J]. Journal of Architecture and Civil Engineering, 2020,37(4):1. [百度学术]
XIAO Z, SHEN J Y, BAI M Y,et al. Reuse of construction spoil in china: current status and future opportunities[J]. Journal of Cleaner Production, 2021(290): 125742. [百度学术]
肖建庄,张青天,段珍华,等.建筑废物堆山造景工程探索[J].结构工程师,2019,35(4):60. [百度学术]
XIAO Jianzhuang, ZHANG Qingtian, DUAN Zhenhua, et al. Exploration of using construction waste in piling up hill for making scenery[J]. Structural Engineers, 2019,35(4):60. [百度学术]
SANJAYAN J G, NAZARI A, NEMATOLLAHI B. 3D concrete printing technology[M]. Amsterdam: Elsevier, 2019. [百度学术]
SCHUTTER G D, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printed with concrete — technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018(112):25. [百度学术]
LABONNOTE N, RØNNQUIST A, MANUM B, et al. Additive construction: state-of-the-art, challenges and opportunities[J]. Automation in Construction, 2016(72): 347. [百度学术]
BUSWELL R A, LEAL DE SILVA W R, JONES S Z, et al. 3D printing using concrete extrusion: a roadmap for research[J]. Cement and Concrete Research, 2018(112): 37. [百度学术]
康馨,陈植欣,雷航,等.基于3D打印研究颗粒形状对砂土宏观力学性质的影响[J].岩土工程学报,2020,42(9):1765. [百度学术]
KANG Xin, CHEN Zhixin, LEI Hang, et al. Effects of particle shape on mechanical performance of sand with 3D printed soll analog[J]. Chinese Journal of Geotechnical Engineering, 2020,42(9):1765. [百度学术]
SILVEIRA Z C, DE FREITAS M S, INFORÇATTI NETO P, et al. Study of the technical feasibility and design of a mini head screw extruder applied to filament deposition in desktop 3-d printer[J]. Key Engineering Materials, 2013(572):151. [百度学术]
李耀刚,叶晓濛,纪宏超,等.先驱体陶瓷材料3D打印机螺杆挤出装置的设计与优化[J].北京工业大学学报,2019,45(12):1173. [百度学术]
LI Yaogang, YE Xiaomeng, JI Hongchao, et al. Design and optimization of the screw extrusion device for a precursor ceramic material 3D printer[J]. Journal of Beijing University of Technology, 2019,45(12):1173. [百度学术]
MAILLARD P, AUBERT J E. Effects of the anisotropy of extruded earth bricks on their hygrothermal properties[J]. Construction and Building Materials, 2014(63):56. [百度学术]
BALASUBRAMANIAN J, SABUMON P C, JOHN U, et al. Reuse of textile effluent treatment plant sludge in building materials[J]. Waste Management, 2006(26):22. [百度学术]
MALHOTRA S K, TEHRI S P. Development of bricks from granulated blast furnace slag[J]. Construction and Building Materials, 1996 (10): 191. [百度学术]
SUBASHI DE SILVA G H M J, MALLWATTHA M P D P. Strength, durability, thermal and run-off properties of fired clay roof tiles incorporated with ceramic sludge[J] Construction and Building Materials, 2018(179): 390. [百度学术]
海龙,梁冰,卢钢,等.煤矸石-粉煤灰烧结砖的研制[J].硅酸盐通报,2013,32(7):1291. [百度学术]
HAI Long , LIANG Bing, LU Gang, et al. Development of sintered brick made from coal gangue and fly ash[J]. Bulletin of the Chinese Ceramic Society, 2013,32(7):1291. [百度学术]
MINKE G. Building with earth: design and technology of a sustainable architecture[M]. Boston: Birkhäuser, 2012. [百度学术]
POLITO C P, MARTIN II J R. Effects of nonplastic fines on the liquefaction resistance of sands[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5) :408. [百度学术]
THEVANAYAGAM S, MOHAN S. Intergranular state variables and stressstrain behaviour of silty sands[J]. Geotechnique, 2000, 50 (1) :1. [百度学术]
陈永健,赵艳林,文松松,等.黏粒含量对砂土强度和压缩特性的影响[J].科学技术与工程,2017,17(23):281. [百度学术]
CHEN Yongjian, ZHAO Yanlin, WEN Songsong, et al. Effect of clay content on the strength and compressibility of sandy soil[J]. Science Technology and Engineering, 2017,17(23):281. [百度学术]
黎亮,杨晓松,李宏伟.南疆绿洲区含残膜砂土击实特性试验研究[J].公路,2019,64(11):199. [百度学术]
LI Liang, YANG Xiaosong, LI Hongwei. Experimental study on compaction characteristics of sandy soil with residual film in oasis area of southern Xinjiang[J]. Highway, 2019,64(11):199. [百度学术]
SCHMITZ R M, SCHROEDER C, CHARLIER R. Chemo-mechanicalinteractions in clay: a correlation between clay mineralogy andatterberg limits[J]. Applied Clay Science, 2004, 26 (1/4) :351. [百度学术]
贺智强,樊恒辉,王军强,等.木质素加固黄土的工程性能试验研究[J].岩土力学,2017,38(3):731. [百度学术]
HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017,38(3):731. [百度学术]
张建伟,亢飞翔,边汉亮,等.冻融循环下木质素改良黄泛区粉土无侧限抗压强度试验研究[J].岩土力学,2020(S2):1. [百度学术]
ZHANG Jianwei, KANG Feixiang, BIAN Hanliang, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow river flood area under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2020(S2):1. [百度学术]
肖建庄. 可持续混凝土结构导论[M]. 北京: 科学出版社, 2017. [百度学术]
XIAO Jianzhuang. An introduction to sustainable concrete structures[M]. Beijing: Science Press, 2017. [百度学术]
MOUSAVI F, ABDI E, FATEHI P, et al. Rapid determination of soil unconfined compressive strength using reflectance spectroscopy[J]. Bulletin of Engineering Geology and the Environment, 2021(80): 3923. [百度学术]
中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020. [百度学术]
Ministry of Transport of the People’s Republic of China. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. [百度学术]
PHONPHUAK N, KANYAKAM S, CHINDAPRASIRT P. Utilization of waste glass to enhance physical–mechanical properties of fired clay brick[J]. Journal of Cleaner Production, 2016 (112): 3057. [百度学术]
闫澍旺,郭炳川,楚剑,等.软泥土开裂机理分析及模型试验研究[J].应用数学和力学, 2015, 36(S1):117. [百度学术]
YAN Shuwang, GUO Bingchuan, CHU Jian, et al. Mechanism of soft clay cracking and model test simulation[J]. Applied Mathematics and Mechanics, 2015, 36(S1):117. [百度学术]
BRAJA M D. Advanced soil mechanics[M]. 5th ed. Boca Raton: CRC Press, 2019. [百度学术]
肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2007. [百度学术]
XIAO Jianzhuang. Recycled concrete [M]. Beijing: China Architecture & Building Press, 2007. [百度学术]
肖建庄,马旭伟,刘琼,等.全再生混凝土概念的衍化与研究进展[J].建筑科学与工程学报, 2021, 38(2):1. [百度学术]
XIAO Jianzhuang, MA Xuwei, LIU Qiong, et al. Evolvement and research progress of concept for full recycled concrete[J]. Journal of Architecture and Civil Engineering, 2021, 38(2):1. [百度学术]
XIAO J Z, MA Z M, SUI T B, et al. Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste[J]. Journal of Cleaner Production, 2018(188):720. [百度学术]