摘要
基于戴河口至洋河口海滩养护后的海滩平衡剖面实测资料,以存在离岸单一沙坝的低能砂质海滩为研究对象,分析其海滩剖面形态演变,提出以背景剖面和沙坝剖面叠加的单一沙坝型海滩平衡剖面预测公式。背景剖面基于最大信息熵原理充分考虑沙坝向岸侧和离岸侧差异,沙坝剖面则采用3~4个参数以抛物线函数形式分段描述非对称性沙坝形态。该平衡剖面公式对戴河口至洋河口岸段养护后的海滩剖面拟合效果较好,且成功应用于北戴河老虎石海滩和美国佛罗里达Fort Myers海滩,能较准确反映存在离岸单一沙坝低能海滩的平衡剖面特性。
离岸水下沙坝是海岸动力地貌中常见的一种形态,由波浪、潮流等海洋水动力综合作用堆积而成,常见于潮差小、潮流弱、波高小的低能海
人工离岸沙坝的建设改变了原有的海滩地貌形态,分析和研究存在离岸沙坝的海滩剖面演变对海滩养护工程的设计优化和性能评估具有重要意义。Pan
沙坝的形态演变最终会导致整个海滩剖面的变化。海滩剖面形态的拟合公式最先由Brun
北戴河新区戴河口至洋河口岸线整治工程以戴河口至仙螺岛约1.4km和洋河口至海上自助餐厅约1.0km两段为重点修复岸线,包括滩肩补沙、水下沙坝和人工岬头3项内容。滩肩补沙总方量约3×1

图1 戴河口至洋河口岸段海滩养护工程示意
Fig. 1 Beach nourishment project at the coast between the Daihe Estuary and the Yanghe Estuary
低能海滩是指波高常年较小、受风暴潮影响较小、破波带范围窄且靠近岸线、破波带地形演变较为缓慢的海

图2 波浪玫瑰图
Fig. 2 Diagram of wave rose
河北省地质矿产勘查开发局第八地质大队于工程前、后长时间对海滩剖面进行地形监测(剖面位置如

图3 含单一沙坝海滩实测剖面形态演变
Fig. 3 Morphological evolution of actual beach profile with a sandbar
Brun
(1) |
式中:为剖面边缘水深;为水深至0m高程处的水平距离;x为离岸距离;S为剖面形态参数,将泥沙粒径、沉降速度和长期波浪条件综合参数化,参数由约束条件得到。
文献[
(2) |
式中:为向岸侧沙槽坐标;为沙坝坝顶处坐标;为指数衰减剖面坐标;为渐进水深;为向岸侧沙槽和沙坝之间的位置,。该公式前4段采用抛物线形式描述沙坝及其向岸侧的剖面形态,最后一段采用指数形式描述向海侧的剖面形态,与Wang和Davi
Tseng
(3) |
(4) |
式中:A1、A2、B1、B2和B3均为量纲一化的参数,可对实测数据进行最小二乘法拟合得到;和分别是量纲一化的离岸距离和水深,其中和分别为沙坝坝顶距岸线的水平距离和坝顶水深。
本文充分考虑剖面近岸和离岸区域差异,以背景剖面和沙坝剖面叠加建立单一沙坝型海滩平衡剖面形态公式,如
(5) |
式中:h0为背景水深,由对实测剖面资料拟合较好的Don
(6) |
式中:为沙坝坝顶处的背景水深,由代入

图4 单一沙坝型海滩剖面各变量示意
Fig. 4 Diagram of each variable in a single sandbar beach profile
选取戴河口至洋河口养护工程N5、N6和N7海滩实测数据(最后实测剖面)为参考的平衡剖面,采用Stephens公式(

图5 戴河口-洋河口海滩含沙坝平衡剖面对比
Fig. 5 Predicted equilibrium beach profiles compared with measured profile, Hsu’s and Stephens’s model between the Daihe Estuary and the Yanghe Estuary
为了阐明公式在低能海滩的适用性,选取秦皇岛北戴河老虎石海

图6 老虎石海滩含沙坝平衡剖面对比
Fig. 6 Comparison of predicted equilibrium beach profiles against measured profile, Hsu’s and Stephens’s model at the Tiger-Rock Beach in Qinhuangdao

图7 Fort Myers海滩含沙坝平衡剖面对比
Fig. 7 Comparison of predicted equilibrium beach profiles against measured profile, Hsu’s and Stephens’s model at the Fort Myers Beach in Florida
基于秦皇岛北戴河新区戴河口至洋河口海滩修复工程实测剖面数据,分析存在离岸单一沙坝的海滩平衡剖面形态演变,建立背景剖面与沙坝剖面叠加的单一沙坝型海滩平衡剖面形态预测公式,主要结论如下:
(1)离岸单一沙坝为海滩剖面最活跃的位置。波浪作用下沙坝向海侧逐渐趋于平缓,向岸侧趋于陡峭,沙坝坝顶高程降低,沙坝形态向高度不对称趋势发展;由于沙坝泥沙的向岸横向输运和沙坝对滩肩回流的拦截作用,沙坝整体有向岸移动的趋势;沙坝形态在海滩养护后1.0~1.5年趋于稳定,整个海滩剖面达到平衡状态。
(2)海滩养护后,离岸沙坝海滩剖面演变为背景剖面-沙坝剖面模式。背景剖面始终保持相对稳定,沙坝剖面在背景剖面的基础上发生横向移动和形态演变。
(3)本文提出背景剖面与沙坝剖面相叠加的单一沙坝型海滩平衡剖面形态公式,背景剖面基于最大信息熵原理充分考虑近岸侧和离岸侧差异,沙坝剖面采用3~4个参数以抛物线形式分段描述沙坝剖面,能较好地对存在离岸单一沙坝的海滩剖面进行拟合,并成功应用于北戴河老虎石海滩和美国佛罗里达Fort Myers海滩,且拟合精度优于Hsu公式和Stephens公式,该公式可用于低能砂质海滩中预测单一沙坝型海滩平衡剖面形态。对于存在多沙坝的海滩平衡剖面公式则有待进一步研究。
作者贡献声明
匡翠萍:方法提出、论文撰写及论文修改。
黄光玮:数据处理、论文初稿撰写。
冒小丹:数据处理、公式拟合。
韩雪健:数据处理。
朱 磊:现场工作。
参考文献
JACKSON N L, NORDSTROM K F, ELIOT I, et al. ‘Low energy’ sandy beaches in marine and estuarine environments: A review [J]. Geomorphology, 2002, 48(1/2/3): 147. [百度学术]
匡翠萍, 马悦, 董博灵, 等. 人工水下沙坝对中海滩浴场水动力影响[J]. 同济大学学报(自然科学版), 2018, 46(5): 613. [百度学术]
KAUNG Cuiping, MA Yue, DONG Boling, et al. Effect of artificial submerged sandbar on hydrodynamics at Zhonghaitan Beach [J]. Journal of Tongji University (Natural Science), 2018, 46(5):613. [百度学术]
RUTTEN J, RUESSINK B G, PRICE T D. Observations on sandbar behaviour along a man-made curved coast [J]. Earth Surface Processes and Landforms, 2018, 43(1): 134. [百度学术]
PAN Y, KUANG C P, ZHANG J B, et al. Postnourishment evolution of beach profiles in a low-energy sandy beach with a submerged berm [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2017, 143(4):05017001.DOI: 10.1061/(ASCE)WW.1943-5460.0000384. [百度学术]
杨玉宝, 潘毅, 陈永平, 等. 低能砂质海岸人工水下沙坝剖面的演变分析[J]. 水动力学研究与进展(A辑), 2019, 34(2): 232. DOI: 10.16076/j.cnki.cjhd.2019.02.012. [百度学术]
YANG Yubao, PAN Yi, CHEN Yongping, et al. Analysis of evolution of beach profiles in a low-energy sandy beach with a submerged berm [J]. Chinese Journal of Hydrodynamics, 2019, 34(2): 232. DOI: 10.16076/j.cnki.cjhd.2019.02.012. [百度学术]
KUANG C P, HAN X J, ZHANG J B, et al. Morphodynamic evolution of a nourished beach with artificial sandbar: Field observations and numerical modeling [J]. Journal of Marine Science and Engineering, 2021, 9(3). DOI: 10.3390/jmse9030245. [百度学术]
BRUUN P. Coast erosion and the development of beach profiles[C]//Beach Erosion Board Technical Memorandum 44.Washington D C: U.S. Army Corps of Engineers, 1954: 79. [百度学术]
DEAN R G. Equilibrium beach profiles-characteristics and applications [J]. Journal of Coastal Research, 1991, 7(1): 53. [百度学术]
BODGE K R. Representing equilibrium beach profiles with an exponential expression [J]. Journal of Coastal Research, 1992, 8(1): 47. [百度学术]
LARSON M. Equilibrium profile of a beach with varying grain size[C]//Proceedings of Coastal Sediments. Washington D C: Seattle, 1991:905-919. [百度学术]
LEE P Z F. The submarine equilibrium profile:A physical model [J]. Journal of Coastal Research, 1994, 10(1): 1. [百度学术]
DONG P. Long-term equilibrium beach profile based on maximum information entropy concept [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2008, 134(3): 160. [百度学术]
HOLMAN R A, LALEJINI D M, EDWARDS K, et al. A parametric model for barred equilibrium beach profiles [J]. Coastal Engineering, 2014, 90:85. [百度学术]
STEPHENS S A, COCO G, BRYAN K R. Numerical simulations of wave setup over barred beach profiles: Implications for predictability [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2011, 137(4):175. [百度学术]
HSU T W, TSENG I F, LEE C P. A new shape function for bar-type beach profiles [J]. Journal of Coastal Research, 2006, 22(3): 728. [百度学术]
DOUCETTE J S. Bedform migration and sediment dynamics in the nearshore of a low-energy sandy beach in Southwestern Australia[J]. Journal of Coastal Research, 2002, 18(3): 576. [百度学术]
尹硕, 潘毅, 陈永平. 基于局部拟合法的低能沙质海岸比尺设计[J]. 水利水运工程学报, 2017(4): 43. DOI: 10.16198/j.cnki.1009-640x.2017.04.007. [百度学术]
YIN Shuo, PAN Yi, CHEN Yongping. Scale design based on local curve fitting method for low-energy sandy beach [J]. Hydro-Science and Engineering, 2017(4): 43. DOI: 10.16198/j.cnki.1009-640x.2017.04.007. [百度学术]
TOM A M, VUIK V, AARNINKHOF S G J. Sandy beaches in low-energy, non-tidal environments: Linking morphological development to hydrodynamic forcing [J]. Geomorphology, 2021, 374: 107522. DOI: 10.1016/j.geomorph.2020.107522. [百度学术]
温昌麒, 朱君, 蔡峰, 等. 海滩修复工程影响下的低能海岸波浪能量时空分布特征研究[J]. 海洋与湖沼, 2021, 52(1):75. DOI: 10.11693/hyhz20200300104. [百度学术]
WEN Changqi, ZHU Jun, CAI Feng, et al. Spatial and temporal distribution of wave energy on low energy coasts under the effect of beach restoration project [J]. Oceanologia et Limnologia Sinica, 2021, 52(1): 75. DOI: 10.11693/hyhz20200300104. [百度学术]
GREEN M O, COCO G. Review of wave-driven sediment resuspension and transport in estuaries [J]. Reviews of Geophysics, 2014, 52(1): 77. [百度学术]
江林锋. 戴河口—洋河口岸段整治工程下的水沙动力变化特征研究[D]. 上海: 同济大学, 2018. [百度学术]
JIANG Linfeng. Study on change features of hydrodynamics and sediment dynamics to a beach nourishment at the coast between the Daihe Estuary and the Yanghe Estuary[D]. Shanghai: Tongji University, 2018. [百度学术]
BRUTSCHE K E, WANG P, BECK T M, et al. Morphological evolution of a submerged artificial nearshore berm along a low-wave microtidal coast, Fort Myers Beach, west-central Florida, USA [J]. Coastal Engineering, 2014, 91: 29 [百度学术]
WANG P, DAVIS R A. A beach profile model for a barred coast-Case study from Sand Key, west-central Florida [J]. Journal of Coastal Research, 1998, 14(3): 981. [百度学术]
TSENG I F, LEE C P, CHANG H K. Study on shape functions for bar-type beach profiles[C]//Proceedings of the Nineteenth International Conference on Ocean Engineering.Taiwan: [s.n.],1997: 561-568. [百度学术]