摘要
开展了14根高强超高延性混凝土(high-strength engineered cementitious composite,HS‒ECC)梁的四点弯曲试验,研究了混凝土类型、纵筋配筋率和是否配置箍筋三因素对配筋梁弯剪性能的影响。基于平截面假定和材料本构关系,计算了配筋HS‒ECC梁的受弯承载力。基于国内外规范,计算了无腹筋HS‒ECC梁的受剪承载力。最后,采用Abaqus软件建立了HS‒ECC梁的有限元模型。结果表明:有腹筋梁均为受弯破坏,随着纵筋配筋率增大,试件极限荷载和刚度逐渐增大,而延性未显著降低,配筋HS‒ECC梁较普通混凝土梁具有更优异的裂缝分散能力和抗弯性能;无腹筋HS‒ECC梁的破坏模式随配筋率增大由受弯破坏转变为受剪破坏,梁受剪承载力和刚度增大,但延性逐渐降低;配筋HS‒ECC梁受弯承载力的计算结果与试验值吻合较好;HS‒ECC梁有限元模型可有效模拟试件的荷载‒位移曲线。
超高延性混凝土(engineered cementitious composite,ECC)是根据微观力学原理由短切高性能纤维增强水泥基材料制备而
目前常规强度ECC主要由聚乙烯醇(PVA)纤维制备而成,PVA‒ECC稳态拉伸裂缝宽度通常小于100 μm,极限拉应变通常介于3%~5%之
由于混凝土自身脆性以及抗拉强度和拉应变低,普通钢筋混凝土梁通常带裂缝工作,较大的裂缝宽度易引发钢筋腐蚀,达到极限荷载时受压区混凝土压溃。已有研究人员将ECC应用于配筋受弯梁中,并探讨了受弯承载力计算模
对于ECC梁的抗剪性能,研究人员提出了配筋ECC梁受剪承载力的计算方法,探讨了不同配筋率下无腹筋ECC梁以及不同配箍率、纤维掺量、剪跨比下配箍ECC梁的受剪性能变化规
目前,由于成本较高、施工复杂、设计理论不完善等问题,HS‒ECC结构应用仍受到限制,已有研究人员尝试通过降低纤维掺量或将ECC用于构件关键位置来解决这些问
试件的几何尺寸和配筋分别如

图 1 试件的几何尺寸和配筋(单位:mm)
Fig. 1 Geometric parameters and reinforcement of specimens (unit:mm)
试件加载装置和测点布置如

图 2 加载装置、位移测点布置和数字图像相关法
Fig. 2 Loading setup, instrumentation layout and digital image correlation method
如

图 3 典型破坏模
Fig. 3 Typical failure mode
试件的荷载‒跨中挠度曲线如

图 4 荷载‒跨中挠度曲线
Fig. 4 Load-midspan deflection curves
根据平截面假定、钢筋和HS‒ECC的材料本构关系,推导未配筋和配筋HS‒ECC梁受弯截面的开裂弯矩、屈服弯矩和极限弯矩公式,再计算试件的开裂荷载、屈服荷载和极限荷载。
作如下基本假定:
(1)HS‒ECC梁符合平截面假定。以试件RU3Φ8为例,借助数字图像相关法,最终获得不同荷载和跨中挠度下纯弯段上沿高度方向的HS‒ECC水平应变分布,如

图 5 HS‒ECC梁水平位移示意图
Fig. 5 Schematic diagram of horizontal displacement of HS-ECC beams

图 6 试件RU3Φ8的平截面假定验证
Fig. 6 Plain-section assumption verification for RU3Φ8
(2)纵筋与HS‒ECC共同变形。HS‒ECC具有较高的基体强度和大掺量纤维,能够保证与钢筋之间的荷载传递。因此,假定钢筋和HS‒ECC之间完全黏结。
(3)在整个加载过程中,考虑拉区HS‒ECC的贡献。如
采用简化的二折线模型表征HS‒ECC拉压本构,
(1) |
(2) |
式中:σtc和εtc分别为开裂强度和开裂应变;σtu和εtu分别为极限抗拉强度和极限拉应变;σcp和εcp分别为峰值抗压强度和压应变;σcu和εcu分别为极限压应力和压应变。

图 7 HS‒ECC的理论应力‒应变曲线
Fig. 7 Theoretical stress-strain curves of HS-ECC
HS‒ECC拉压本构参数如
注: Ec表示HS‒ECC的弹性模量。
为简化计算,对钢筋采用理想弹塑性应力‒应变曲线。各试件理论模型中纵筋的几何和力学参数如
加载过程中应力‒应变分布可分为以下4种情况:
(1)弹性阶段,从开始加载到HS‒ECC开裂(见

图 8 跨中截面HS‒ECC和钢筋沿高度方向的水平应力‒应变分布
Fig. 8 Horizontal stress-strian distribution of HS-ECC and steel bars along the depth of midspan cross section
(2)屈服阶段,从HS‒ECC开裂到梁底纵筋屈服。此时有2种情况:梁底纵筋屈服时,HS‒ECC受压边缘应力尚未达到峰值压应力,如
(3)破坏阶段1,从梁底纵筋屈服到受压区顶面HS‒ECC受压达到峰值压应力(见
(4)破坏阶段2,从梁底纵筋屈服到受压区顶面HS‒ECC受压达到极限压应力(见
ε(x)、σ(x)分别为该点的应变和应力,b和h分别为试件截面宽度和高度,m为钢筋合力作用点到梁底距离,xc为中性轴到梁顶面距离,xc=,c为中性轴到梁底面距离,a为开裂强度位置到梁底的距离,β1为等效矩形高度与xc之比,β1xc为等效矩形受压区高度,α1为等效矩形受压应力与峰值抗压强度σcp之比,εs和σs分别为钢筋应变和应力。为简化计算,将受压区HS‒ECC的应力分布等效为矩形分布,根据受压区HS‒ECC的应力分布形式可分为线性阶段和双折线阶段2种情况。
(1)情况1,受压区线性阶段,如
(3) |
(4) |
(5) |
(6) |
合力作用点相同时,计算式如下所示:
(7) |
(8) |
(9) |
(2)情况2,受压区双线性阶段,此时εcp≤εc≤εcu。水平力平衡时,计算式如下所示:
(10) |
(11) |
(12) |
合力作用点相同时,计算式如下所示:
(13) |
(14) |
随着受压区边缘HS‒ECC的压应变εc从零逐渐增大到εcu,根据平截面假定,得到跨中截面沿高度方向的应变分布。根据材料的本构关系,利用应变分布计算应力分布。中性轴到梁顶面的距离xc按力平衡计算。各临界时刻的弯矩求解过程如下所示:
首先,假定受压区边缘HS‒ECC的应变介于零和εcp之间。若计算结果与假设矛盾,则假定受压区边缘应变介于εcp和εcu之间,重新计算,如下所示:
(19) |
(20) |
式中:εy为纵筋屈服应变。
(21) |
(22) |
当εc=εcp时,
(23) |
(24) |
当εc=εcu时,
(25) |
(26) |
破坏弯矩Mp和Mu按下式计算:
(27) |
(28) |
注: Pcr、Py 、Pmax、Pu、Pp分别表示初裂荷载、屈服荷载、最大荷载、极限荷载、峰值压应变下荷载;下标exp和th分别表示试验和理论。

图 9 跨中截面弯矩‒曲率曲线
Fig. 9 Midspan moment-curvature curves

图 10 中性轴高度和梁底HS‒ECC拉应变关系
Fig. 10 Relationship between neutral axis height and tensile strain of HS-ECC at the bottom of beam
荷载和HS‒ECC受拉边缘应变关系如

图 11 荷载和HS‒ECC受拉边缘应变关系
Fig. 11 Relationship between load and tensile strain of HS-ECC

图 12 配筋率与HS‒ECC受拉边缘应变(拉应变需求)
Fig. 12 Relationship between reinforcement ratio and tensile strain of HS-ECC(tensile strain demand)
各试件荷载‒纵筋应变的试验和理论曲线如

图 13 荷载‒纵筋应变的试验和理论计算结果
Fig. 13 Experimental and theoretical results of load and strain of longitudinal steel bars

图 14 荷载和HS‒ECC受压边缘应变关系
Fig. 14 Relationship between load and compressive strain of HS-ECC
配筋HS‒ECC受拉区拉力由钢筋和HS‒ECC共同提供,受压区压力由HS‒ECC提供,共同抵抗外力产生的弯矩。为了探讨配筋HS‒ECC梁中钢筋和HS‒ECC对受弯承载力的贡献,以RU3Φ8为例,将钢筋贡献的弯矩表示为钢筋拉力与钢筋合力中心到受压区HS‒ECC合力中心的距离的乘积,HS‒ECC贡献的弯矩表示为总弯矩与钢筋贡献的弯矩之差,如

图 15 受拉区钢筋和HS‒ECC对跨中截面弯矩的贡献比例
Fig. 15 Contribution ratio of midspan moment for tensile longitudinal steel bars and HS-ECC
配筋HS‒ECC梁的截面曲率延性系数与配筋率的关系如

图 16 截面曲率延性系数与配筋率的关系
Fig. 16 Relationship between cross-section curvature ductility index and reinforcement ratio
对于普通钢筋混凝土梁,当配筋率较小时,混凝土开裂后裂缝迅速扩展,开裂截面上原来由混凝土承担的拉力转嫁到钢筋,钢筋应力和应变迅速增大进而拉断,因此应对普通钢筋混凝土梁的最小配筋率做出规定。对于配筋HS‒ECC梁,当不配筋或配筋率较小时,HS‒ECC开裂后具有极强的拉应变硬化性能,能够继续承担拉力,不会导致钢筋应力陡增,因此一般不必对配筋HS‒ECC梁的最小配筋率做出限制。
当受拉钢筋应力达到屈服强度的同时,若HS‒ECC受压边缘纤维恰好达到极限压应变,则认为梁达到极限承载力而破坏,此时发生界限破坏,对应配筋率为界限配筋率。因此,根据力学平衡方程和几何物理关系(见
(29) |
(30) |
式中:xcu为界限破坏时中性轴到梁顶面距离。
如
注: Vu1~Vu4为不同方法计算得到的受剪承载力。参数定义见对应规范。
注: Vexp为试验承载力。
采用Abaqus有限元软件开展了配筋HS‒ECC梁的受弯和受剪性能数值模拟。采用的HS‒ECC受压本构关系参考了文献[
(31) |
, |
式中:Ec0为初始弹性模量;Ecp为峰值点的割线弹性模量。受压本构关系如

图 17 有限元模型中HS‒ECC的受压和受拉应力‒应变曲线
Fig. 17 Theoretical compressive and tensile stress-strain curves of HS-ECC in finite element model
采用Abaqus软件自带的混凝土塑性损伤(concrete damaged plasticity,CDP)模型作为HS‒ECC的材料模型。CDP模型选用的HS‒ECC梁基本参数如表
数值模型中钢筋的真实应力‒应变曲线由试验结果的名义应力‒应变曲线换算获得,如

图 18 有限元模型中不同直径钢筋的真实应力‒应变曲线
Fig. 18 True stress-strain curves of steel bars with different diameters in finite element model
有腹筋HS‒ECC梁的有限元模型和网格划分如

图 19 基于Abaqus软件的配筋HS‒ECC梁的有限元模型
Fig. 19 Finite element model of HS-ECC beams based on Abaqus
加载板与HS‒ECC梁之间法向采用硬接触(hard contact),切向采用摩擦接触,摩擦系数取0.25。支座与HS‒ECC梁之间采用Tie约束。钢筋与HS‒ECC梁之间采用Embeded连接,不考虑两者的黏结‒滑移关系。采用位移控制施加荷载,设置参考点并耦合至加载板顶面。

图 20 试验和有限元模拟的荷载‒跨中挠度曲线
Fig. 20 Numerical and experimental load-midspan deflection curves
由
(1)配筋HS‒ECC梁充分发挥了HS‒ECC优异的拉伸与压缩变形能力,从而表现出优异的弯、剪延性以及更高的承载力与刚度。HS‒ECC具有高拉伸强度、高压缩变形能力以及良好的延性和裂缝控制能力,使其具备了独立承担荷载以及形成无配筋构件的能力,从而为极端环境下构件耐久性提升提供了潜在的解决方案。
(2)考虑了HS‒ECC尺寸效应与箍筋干扰引起的拉伸性能折减,推导的受弯承载力理论结果与试验结果吻合良好。随后,得到了截面弯矩‒曲率关系、中性轴发展过程、不同配筋率下受弯构件对HS‒ECC的拉应变需求,分析了钢筋和HS‒ECC对受弯承载力的贡献,并计算了截面曲率延性系数和界限配筋率。最后,验证了现有规范对无箍筋HS‒ECC梁剪切承载力的适用性。
(3)基于Abaqus软件的有限元模型准确模拟了HS‒ECC弯剪试件的荷载‒跨中挠度曲线,试件的模拟最大荷载与试验值平均误差小于10%。
作者贡献声明
蔡自伟:论文构思、写作和修改,理论推导。
邓博予:试验实施,数据整理。
张 智:数值模拟。
陆洲导:基金获取。
李凌志:基金获取,论文修改。
俞可权:试验方案提出。
参考文献
LI V C, LEUNG C. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246. [百度学术]
PAN Jinlong, MO Chuang, XU Li, et al. Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading[J]. Journal of Southeast University(English Edition), 2017, 33(1): 70. [百度学术]
YANG Xu, GAO Wanyang, DAI Jianguo, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Composite Structures, 2018, 189: 9. [百度学术]
徐世烺,李锐,李庆华,等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123. [百度学术]
XU Shilang, LI Rui, LI Qinghua, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion[J]. Engineering Mechanics, 2020, 37(8): 123. [百度学术]
CAI Ziwei, LIU Feichi, YU Jiangtao, et al. Development of ultra-high ductility engineered cementitious composites as a novel and resilient fireproof coating[J]. Construction and Building Materials, 2021, 288:123090. [百度学术]
徐世烺,李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6): 45. [百度学术]
XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008(6): 45. [百度学术]
阚黎黎,章志,张利,等. 低成本PVA纤维对超高韧性水泥基复合材料力学性能的影响[J]. 工程力学, 2019, 36(11): 121. [百度学术]
KAN Lili, ZHANG Zhi, ZHANG Li, et al. Effect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites[J]. Engineering Mechanics, 2019, 36(11): 121. [百度学术]
KAMAL A, KUNIEDA M, UEDA N, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites, 2008, 30(10): 863. [百度学术]
RANADE R, LI V C, STULTS M D, et al. Composite properties of high-strength, high-ductility concrete[J]. ACI Materials Journal, 2013, 110(4): 413. [百度学术]
DING Yao, YU Jiangtao, YU Kequan, et al. Basic mechanical properties of ultra-high ductility cementitious composites: from 40 MPa to 120 MPa [J]. Composite Structures, 2018, 185: 634. [百度学术]
LI Lingzhi, CAI Ziwei, YU Kequan, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa[J]. Cement and Concrete Composites, 2019, 97: 202. [百度学术]
DING Yao, YU Kequan, YU Jiangtao, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study[J]. Construction and Building Materials, 2018, 177: 102. [百度学术]
LI Lingzhi, BAI Yang, YU Kequan, et al. Reinforced high-strength engineered cementitious composite (ECC) columns under eccentric compression: experiment and theoretical model[J]. Engineering Structures, 2019, 198: 109541. [百度学术]
李庆华,徐世烺. 钢筋增强超高韧性水泥基复合材料受弯构件理论分析[J]. 工程力学, 2010, 27(7): 92. [百度学术]
LI Qinghua, XU Shilang. Theoretical analysis on flexural behavior of reinforced ultra-high toughness cementitious composite members[J]. Engineering Mechanics, 2010, 27(7): 92. [百度学术]
LIAO Qiao, LI Lingzhi, LI Bixiong, et al. Prediction on the flexural deflection of ultra-high strength rebar reinforced ECC beams at service loads[J]. Structures, 2021, 33: 246. [百度学术]
CAI Jingming, PAN Jinlong, YUAN Fang. Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams[J]. Journal of Southeast University (English Edition), 2014, 30(3): 330. [百度学术]
GE Wenjie, ASHOUR A F, JI Xiang, et al. Flexural behavior of ECC-concrete composite beams reinforced with steel bars[J]. Construction and Building Materials, 2018, 159: 175. [百度学术]
侯利军. 超高韧性水泥基复合材料弯曲性能及剪切性能试验研究[D]. 大连:大连理工大学, 2012. [百度学术]
HOU Lijun. Experimental investigation on flexural and shear behaviors of ultrahigh toughness cementitious composite[D].Dalian: Dalian University of Technology, 2012. [百度学术]
张秀芳,姬仁楠. 钢筋超高韧性水泥基复合材料梁的抗剪性能[J]. 水利与建筑工程学报, 2015, 13(4): 168. [百度学术]
ZHANG Xiufang, JI Rennan. Shear performances of steel reinforced ultrahigh strength cementitious composite beams[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(4): 168. [百度学术]
汪梦甫,徐亚飞,陈红波. PE‒ECC短梁抗剪性能研究[J]. 湖南大学学报(自然科学版), 2015, 42(11): 10. [百度学术]
WANG Mengfu, XU Yafei, CHEN Hongbo. Research on shear behavior of PE-ECC short beam[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 10. [百度学术]
乔治,潘钻峰,梁坚凝,等. 基于MCFT的钢筋增强ECC梁受剪承载力计算方法[J]. 东南大学学报(自然科学版), 2018, 48(6): 1021. [百度学术]
QIAO Zhi, PAN Zuanfeng,LEUNG C K Y, et al. Calculation method for shear strength of reinforced ECC beams using modified compression field theory[J]. Journal of Southeast University(Natural Science Edition), 2018, 48(6): 1021. [百度学术]
MENG D, HUANG T, ZHANG Y X, et al. Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients[J]. Construction and Building Materials, 2017, 141: 259. [百度学术]
YU K Q, DING Y, ZHANG Y X. Size effects on tensile properties and compressive strength of engineered cementitious composites[J]. Cement and Concrete Composites, 2020, 113: 103691. [百度学术]
纤维混凝土结构技术规程(CECS 38∶2004)[S]. 北京: 中国计划出版社,2004. [百度学术]
Technical specification for fiber reinforced concrete structures(CECS 38∶2004)[S]. Beijing: China Planning Press, 2004. [百度学术]
Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)[S]. Tokyo: Japan Society of Civil Engineers, 2008. [百度学术]
International Federation for Structural Concrete. Fib model code for concrete structures 2010[S]. Lausanne: Ernst & Sohn GmbH & Co. KG, 2010. [百度学术]
AFGC, SETRA. Ultra high performance fibre-reinforced concretes recommandations[S]. Paris: AFGC and SETRA Working Group, 2013. [百度学术]
WANG Zhe, NIE Xin, FAN Jiansheng, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams[J]. Construction and Building Materials, 2019, 195: 323. [百度学术]
LI Wei, HAN Linhai. Seismic performance of CFST column to steel beam joints with RC slab: analysis[J]. Journal of Constructional Steel Research, 2011, 67(1): 127. [百度学术]