摘要
采用大涡模拟方法研究了间距比(P/B)为1.5(P为柱心间距,B为方柱边长)、风向角α 为 0°~90°等条件下双方柱在均匀来流作用下的气动力、流态划分、表面风压和流场特性。研究发现:小间距双方柱流动干扰效应显著,下游柱平均气动力随风向角的变化规律与上游柱和单方柱差异较大,且可能受更大的升力绝对值。将小间距比双方柱绕流分为前角分离流态(α = 0°~10°)、分离泡流态(α = 20°~30°)、附着流流态(α = 40°~60°)及间隙侧分离泡流态(α = 70°~90°)四种模式。附着流流态和间隙侧分离泡流态的间隙区出现较强的负压。尾流负压区的强度随风向角先增强后减弱,在α = 50°附近达到峰值。前角分离流态时双柱具有一个整体的尾流回流区,而在其他流态下上下游方柱均有独立的回流区。
超高层建筑群气动干扰效应显著,其表面风荷载与单体建筑差异较
针对小间距比双方柱绕流,以往文献主要围绕串列、并列和错列三种布置形式。Alam
风向角对小间距比双方柱绕流的影响仍有待研究。已有较多文献研究了风向角对单方柱绕流的影
本文以雷诺数Re = 8×1

图1 计算模型和边界条件示意图
Fig. 1 Sketch of computational model and boundary conditions
大涡模拟法(large-eddy simulation,LES)是一种在网格尺度上运用空间平均的方法除去高频成分的物理量计算,此方法可实现湍流流场的再现。大尺度涡通过滤波后的不可压缩Navier-Stokes方程直接求解:
(1) |
(2) |
式中:为滤波后速度分量,xi为空间位置分量,t为时间;为滤波后压力,v为流体运动黏度。τij为亚格子尺度应力,它体现了小尺度涡的运动对所求解的运动方程的影响。综合考虑计算效率和精度,本文采用了壁面自适应局部涡粘(wall-adapted local eddy-viscosity,WALE)亚格子尺度模型模拟τij,WALE模型常数为0.325。计算中采用SIMPLEC算法求解压力速度耦合方程,采用中心差分格式进行空间离散,采用二阶隐式的时间离散方案。

图2 网格示意图
Fig. 2 Details of computational mesh
为验证计算方法和计算参数的合理性和准确性,首先以单方柱为对象,研究了周向网格数、展向长度和量纲一时间步长等参数对平均阻力系数CD、脉动阻力系数CD'、脉动升力系数CL'和斯托罗哈数St的影响,并将计算结果与文献

图3 单方柱的表面风压系数分布
Fig. 3 Distribution of pressure coefficients on a single square cylinder

图4 双方柱的平均气动力系数随风向角的变化
Fig. 4 Variation of mean aerodynamic coefficients of two square cylinders with incidence angle

图5 前角分离流态平均流线图
Fig. 5 Mean streamlines in leading-edge separation mode

图6 分离泡流态平均流线图
Fig. 6 Mean streamlines in separation-bubble mode

图7 附着流流态平均流线图
Fig. 7 Mean streamlines in attached-flow mode

图8 间隙侧分离泡流态平均流线图
Fig. 8 Mean streamlines in gap-side separation-bubble mode
(1) α = 0°, 10°为前角分离流态(
(2) α = 20°, 30°为分离泡流态(
(3) α = 40°, 50°, 60°为附着流流态(
(4) α = 70°, 80°, 90°为间隙侧分离泡流态(
根据

图9 典型风向角下双方柱表面平均风压系数分布
Fig. 9 Distribution of mean pressure coefficient on two square cylinders at typical incidences

图10 典型风向角下双方柱周围平均风压系数云图
Fig. 10 Contours of mean pressure coefficients around two square cylinders at typical incidences
本文在均匀来流、雷诺数Re = 8×1
(1) 下游方柱气动力受流动干扰的影响较大,随着风向角增加其平均阻力和升力分别为上升和下降趋势,其数值一般小于上游方柱和单方柱,但α = 20°~90°时其升力绝对值可能大于后者;而上游方柱平均升力和阻力在各个风向角下与单方柱相近。
(2) 根据上游方柱表面流动分离和再附着的情况,可将风向角α = 0°~90°下小间距比双方柱绕流分为前角分离流态(α = 0°~10°)、分离泡流态(α = 20°~30°)、附着流流态(α = 40°~60°)及间隙侧分离泡流态(α = 70°~90°) 4种模式。
(3) 随着风向角的增加,尾流负压区的强度先增强后减弱,在α = 50°附近达到峰值;附着流流态和间隙侧分离泡流态的间隙区负压显著强于前两个流态;在前角分离流态下,双柱具有一个整体的尾流回流区,而在其他流态下上下游方柱均有独立的回流区。
作者贡献声明
杜晓庆:研究选题,研究思路和技术指导,论文撰写。
许庆:数值计算,数据处理与论文撰写。
董浩天:研究选题,技术指导和论文构思,论文修改。
陈丽萍:数值计算,数据处理。
参考文献
杜晓庆, 许汉林, 马文勇, 等. 串列双方柱气动干扰效应试验研究[J]. 建筑结构学报, 2019, 40(11): 31. [百度学术]
DU Xiaoqing, XU Hanlin, MA Wenyong, et al. Experimental study on interference effect of two square cylinders in a tandem arrangement[J]. Journal of Building Structures, 2019, 40(11): 31. [百度学术]
杨群, 赵会涛, 刘小兵, 等. 串列双方柱绕流的脉动压力分布与气动力研究[J]. 建筑结构, 2020(1): 13. [百度学术]
YANG Qun, ZHAO Huitao, LIU Xiaobing, et al. Study on fluctuating pressure distribution and aerodynamic force of flows around two square cylinders in tandem arrangement[J]. Journal of Building Structures, 2020(1): 13. [百度学术]
ALAM M, MORIYA M, TAKAI K, et al. Suppression of fluid forces acting on two square prisms in a tandem arrangement by passive control of flow[J]. Journal of Fluids & Structures, 2002, 16(8): 1073. [百度学术]
杜晓庆, 施春林, 许汉林, 等. 串列双方柱气动干扰机理的数模模拟研究[J]. 科学技术与工程, 2018, 18(27): 181. [百度学术]
DU Xiaoqing, SHI Chunlin, XU Hanlin, et al. Aerodynamic numerical simulation study on interference mechanism of two square cylinders in tandem arrangement[J]. Science Technology and Engineering, 2018, 18(27): 181. [百度学术]
AGRAWAL A, DJENIDI L, ANTONIA R A. Investigation of flow around a pair of side-by-side square cylinders using the lattice Boltzmann method[J]. Computers & Fluids, 2006, 35(10): 1093. [百度学术]
陈素琴, 顾明, 黄自萍. 两并列方柱绕流相互干扰的数值研究[J]. 应用数学和力学, 2000, 4(2): 24. [百度学术]
CHEN Suqin, GU Ming, HUANG Ziping. Numerical computation of the flow around two square cylinders arranged side by side[j]. Applied Mathematics and Mechanics, 2000, 4(2): 24. [百度学术]
SAKAMOTO H, HANIU H. Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1988, 31(1): 41. [百度学术]
ABOUEIAN J, SOHANKAR A. Identification of flow regimes around two staggered square cylinders by a numerical study[J]. Theoretical and Computational Fluid Dynamics, 2017, 31(3): 295. [百度学术]
陈素琴, 顾明, 黄自萍. 低雷诺数下交错放置的两方柱干扰的数值计算[J]. 同济大学学报(自然科学版), 2004, 32(11): 1466. [百度学术]
CHEN Suqin, GU Ming, HUANG Ziping. Numerical computation of low reynolds numbers flow around two square cylinders in staggered arrangement[J]. Journal of Tongji University (Nature Science), 2004, 32(11): 1466. [百度学术]
ALAM M, BAI H, ZHOU Y. The wake of two staggered square cylinders[J]. Journal of Fluid Mechanics, 2016, 801: 475. [百度学术]
DU X, XU H, MA W, et al. Experimental study on aerodynamic characteristics of two square cylinders at various incidence angles[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019, 191: 154. [百度学术]
LEE B E. The effect of turbulence on the surface pressure field of a square prism[J]. Journal of Fluid Mechanics, 1975, 69(2): 263. [百度学术]
NORBERG C. Flow around rectangular cylinders: pressure forces and wake frequencies[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 49(1): 187. [百度学术]
TAYLOR I, VEZZA M. Prediction of unsteady flow around square and rectangular section cylinders using a discrete vortex method[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 82(1): 247. [百度学术]
VICKERY B J. Fluctuating lift and drag on a long cylinder of square cross-section in a turbulent stream[J]. Journal of Fluid Mechanics, 1966, 25(3): 481. [百度学术]
RODI W. Comparison of LES and RANS calculations of the flow around bluff bodies[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 69(1): 55. [百度学术]
SOHANKAR A, DAVIDSON L, NORBERG C. Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models[J]. Journal of Fluids Engineering, 2000, 122(1): 39. [百度学术]
BEARMAN P W, OBASAJU E D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders[J]. Journal of Fluid Mechanics, 1982, 119(1): 297. [百度学术]
TAMURA T, MIYAGI T. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1):135. [百度学术]