摘要
采用基于误差传播的直接关系图法(directed relation graph with error propagation, DRGEP)、全物种敏感性分析法(full species sensitivity analysis, FSSA)和基于反应路径法的直接关系图法(directed relation graph with path flux analysis, DRGPFA)对甲醇燃烧详细机理进行了简化,利用敏感性分析法筛选出关键基元反应,通过指前因子扰动法进行粗扰动和细扰动分析,并对甲醇简化机理进行了优化和验证。结果表明,FSSA简化机理含有16种组分、65个基元反应,能较准确的预测点火延迟时间和层流火焰速度;V6–3–4优化机理的预测精度较详细机理更接近试验值。
微型能源系统可采用燃烧的方式为微电子机械设备供能,因此,微小尺度燃烧引起了众多学者的关
学者们针对甲醇燃烧反应动力学模型开展了大量研究。基于激波管实验,Bowma
近些年来,学者们对甲醇详细动力学模型开展了简化研究。闫
然而,简化机理在规模缩小的同时,必然会带来预测性能的降低,因而有必要对简化机理进行优
由于C3甲醇详细机理的规模相对不大,组分和基元反应数目适中,为此,本文选择了使用较广泛的单一简化方法和组合简化方法分别对详细机理进行简化。
(1)基于误差传播的直接关系图法 (DRGEP) :从误差传播的角度去分析剔除某一物质对目标物质所产生影响,若其累积误差小于设定阈值则认为该物质为冗余物质,可以从详细机理中剔
(2)全物种敏感性分析法 (FSSA):以敏感性分析法为基础对所有目标产物进行敏感性分析,进而根据全物种敏感性系数判断出各个基元反应之间的相关性,并判断这些相关反应对所有目标物质影响程度,清除对目标产物无明显影响的基元反应,进而得到简化机
(3)基于反应路径分析的直接关系图法(DRGEPSA):直接关系图法中的误差仅考虑预选物质的第一代(直接关系),而通过路径通量分析,能体现第一代和第二代或更高代的重要性,通过代替使用绝对反应速率,使得生产和消耗通量都用于识别重要的反应途径,能在保持目标精度的同时尽可能生成较小的机
基于微小尺度燃烧的特点,确定机理简化工况条件为:温度T=1 100~1 400K、当量比φ=0. 75~1. 25及压力P=1~1. 5 atm。采用Chemkin软件中的闭式均相反应器模型,在简化工况条件下对甲醇的燃烧过程进行计算,利用Reaction Workbench软件,以点火延迟时间的最大误差作为目标参数,得到具有不同误差的简化机理。
首先通过点火延迟时间和层流火焰速度的敏感性分析,筛选出关键基元反应。基于阿伦尼乌斯公
(1) |
式中:k为化学应速率常数;V为指前因子;E为活化能;R为摩尔气体常数和T为温度。
指前因子V是化学反应的重要动力学参数之一,利用指前因子扰动
通过比较点火延迟时间和层流火焰速度的实验值和计算值,对机理进行验证。实验值来源于公开发表的文献中的数据,计算值是通过详细机理、简化机理、优化机理和Chemkin软件中的闭式均相反应器模型、层流燃烧火焰模型的耦合计算得出。计算的边界条件为:当量比φ为0. 75~1. 25,压力P为1~1. 5 atm,温度T为1 100~1 400K。为了对实验值和计算值的差异进行定量分析,层流火焰速度的误差分析采用常规的误差计算
(2) |
(3) |
式中:M1为层流火焰速度误差;M2为点火延迟时间误差;Me为点火延迟时间和层流火焰速度的参考值,即实验值或采用详细机理的计算值;Ms为采用简化机理和优化机理得到的点火延迟时间和层流火焰速度的计算值。

图1 点火延迟时间对比
Fig.1 Comparison of ignition delay time

图2 层流火焰速度对比
Fig.2 Comparison of laminar flame speed values
根据DRGEP、FSSA及DRGPFA 三种简化机理点火延迟时间和层流火焰速度的综合分析,DRGEP简化机理与详细机理最接近,但是规模较大,FSSA简化机理的组分与反应数目最少,而且误差适中,为了有利于后续与CFD软件耦合计算,因此优先选择FSSA机理进行优化。

图3 点火延迟时间敏感性系数
Fig.3 Normalization of sensitivity coefficient of ignition delay time

图4 层流火焰速度敏感性系数
Fig.4 Normalization of sensitivity coefficient of laminar flame speed values
结合点火延迟时间和层流火焰速度,发现基元反应R14、R21和R54对层流火焰速度无影响,R6和R59同样不影响点火延迟时间,最终确定待修正的基元反应为R6、R14、R21、R54和R59,

图5 粗扰动下点火延迟时间
Fig.5 Ignition delay time in coarse perturbation

图6 粗扰动下层流火焰速度
Fig.6 Laminar flame speed in coarse perturbation
经过粗扰动分析,确定了最佳粗扰动V6,接下来则不再对筛选出的关键基元反应进行整体修正,而是局部修正,进而使得优化机理预测的点火延迟时间与层流火焰速度更加接近于实验值。
由
根据前文粗扰动研究发现,正敏感性系数能减少点火延迟时间,负敏感性系数能增大点火延迟时间,所以对于R21应适当减小,R37适当增大。因此,设计了

图7 细化扰动下点火延迟时间
Fig.7 Ignition delay time in refined perturbation
机理V6的计算值在低当量比0. 75~1. 10范围略微偏低,而在高当量比为1. 10~1. 25范围偏高,因此需要对这两部分进行修正。对点火延迟时间修正的基元反应R21和R37对层流火焰速度几乎无影响,故在V6-3优化的基础上,以提高层流火焰速度的预测性能为目标,对机理进一步优化。
对于低当量比下的层流火焰速度,选择R57进行优化,因为R57对低当量比下的层流火焰速度影响大,对中高当量比工况下影响较小;对于高当量比的层流火焰速度优化则继续选择R6和R59。当层流火焰速度的敏感性系数为负值时,绝对值越小,层流火焰速度反而会增大,所以对于R6和R59应适当增大,R57适当减小。因此,设计了

图8 细化扰动下层流火焰速度
Fig.8 Laminar flame speed values in refined perturbation

图9 点火延迟时间
Fig.9 Ignition delay time

图10 计算值与实验的误差
Fig.10 Error between simulation and experiment
(1)在微小尺度燃烧工况条件下,对甲醇C3机理详细机理进行简化,通过分析简化机理对点火延迟时间与层流火焰速度的计算性能,验证了简化机理的准确性。结果表明:与详细机理相比,DRGEP、FSSA、DRGPFA简化机理预测点火延迟时间平均误差分别为1. 31%、7. 46%和8. 36%,预测层流火焰速度平均误差分别为3. 78%、6. 94%和4. 21%;与实验值相比,三种机理预测的点火延迟时间的平均误差分别为5. 22%、9. 82%和10. 11%,预测层流火焰速度的平均误差分别为6. 90%、8. 96%和8. 19%。包含16种组分、65个基元反应的FSSA简化机理具有较好的预测性能和较小的规模。
(2) 基于点火延迟时间与层流火焰速度的敏感性分析,确定了FSSA简化机理初步待修正基元反应:R6、R14、R21、R54和R59;基于粗扰动、细化扰动分析,确定了最终的待修正基元反应:R6、R14、R21、R37、R54和R57,得到了相应的修正值和优化机理V6-3-4。
(3) 对比分析了详细机理、FSSA简化机理、V6-3-4优化机理对点火延迟时间、层流火焰速度的预测性能,结果表明与实验值相比,三种机理预测点火延迟时间平均误差分别为5. 22%、9. 82%和3. 13%,层流火焰速度平均误差分别为:6. 35%、13. 06%和2. 52%。V6-3-4优化机理具有良好的预测性能。
作者贡献声明
张鹏:研究方法、数据建模和计算、论文撰写。
倪计民:研究方案、方法论指导、论文修改。
石秀勇:研究方案、数据建模指导、论文修改。
参考文献
TANG Aikun, XU Yiming, SHAN Chunxian, et al. A comparative study on combustion characteristics of methane, propane and hydrogen fuels in a micro-combustor[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16587. [百度学术]
FAN Aiwu, ZHANG He, WAN Jianlong. Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body[J]. Energy, 2017, 123(15): 252. [百度学术]
HUO Jiepeng, JIANG Liqiao. Numerical study on the propagation of premixed flames in confined narrow disc-shape chambers[J]. Combustion Science and Technology, 2019, 191(8): 1380. [百度学术]
吴继盛,吴家正,刘洪运. 甲醇作柴油机替代燃料的研究现状与展望[J]. 节能技术, 2021, 39(1): 9. [百度学术]
WU Jisheng, WU Jiazheng, LIU Hongyun. Research wtatus and prospect of methanol as alternative fuel for diesel engines[J]. Energy Conservation Technology, 2021, 39(1): 9. [百度学术]
罗燕来. 电场作用下乙醇扩散小火焰特性及燃烧化学反应机理研究[D].广州:华南理工大学,2018. [百度学术]
LUO Yanlai. Investigation on the characteristics and chemical reaction mechanism of small ethanol diffusion flame under electric field[D].Guangzhou:South China University of Technology, 2018. [百度学术]
王小婷. 微尺度平板式和圆柱形燃烧器的实验和数值模拟研究[D].武汉:华中科技大学,2019. [百度学术]
WANG Xiaoting. Experimental and numerical studies on planar and cylingdrical micro combustors[D]. Wuhan:Huazhong University of Science & Technology, 2019. [百度学术]
CRAIG T. Bowman . A shock-tube investigation of the high temperature oxidation of methanol[J]. Combustion and Flame, 1975, 25: 343. [百度学术]
ARONOWITZ D, SANTORO R J, DRYER F L, et al. Kinetics of the oxidation of methanol experimental results semiglobal modeling and mechanistic concepts[J]. Combustion and Flame, 1979, 17(1): 633. [百度学术]
CHARLES K W, FREDERICK L D. A comprehensive mechanism for methanol oxidation[J]. Combustion Science and Technology, 1979, 20(3/4): 125. [百度学术]
TIMOTHY J H, FREDERICK L D. A comprehensive mechanism for methanol oxidation[J]. International Journal of Chemical Kinetics, 1998, 30(11): 805. [百度学术]
LI Juan, ZHAO Zhenwei, ANDREI Kazakov, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109. [百度学术]
HENRY J C. Developing detailed chemical kinetic mechanisms for fuel combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1): 57. [百度学术]
XUE Jie, XI Shuanghui, WANG Fan. An extensive study on skeletal mechanism reduction for the oxidation of C0–C4 fuels[J]. Combustion and Flame, 2020, 214: 184. [百度学术]
ULTAN B, WAYNE K M, SINEAD M B , et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame, 2016, 165(5): 125. [百度学术]
RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels [J]. International Journal of Chemical Kinetics, 2014,46 (9):512. [百度学术]
ELISEO R, ALESSIO F, ALESSANDRO S, et al. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9): 512. [百度学术]
GAN Xiao. A novel integrated strategy for construction of a 96-Species n‑Decane skeletal mechanism with application to ignition delay tester[J]. Energy & Fuels, 2020, 34: 6367. [百度学术]
QUENTIN C, PERRINE P, ELEONORE R, et al. A fully automatic procedure for the analytical reduction of chemical kinetics mechanisms for computational fluid dynamics applications[J]. Fuel, 2021, 303: 121. [百度学术]
闫妍, 张煜盛. 甲醇简化机理及其在 HCCI 燃烧分析中的应用[J]. 华中科技大学学报, 2010, 38(9): 112. [百度学术]
YAN Yan, ZHANG Yusheng. Methanol-reduced mechanism and its application in HCCI combustion analysis[J]. Journal of Huazhong University of Science and Technology, 2010, 38(9): 112. [百度学术]
王刚, 刘训标, 袁春, 等. 一个新的甲醇氧化简化化学动力学机理[J]. 燃烧科学与技术, 2009, 15(6): 557. [百度学术]
WANG Gang, LIU Xunbiao, YUAN Chun, et al.A new reduced chemical kinetic mechanism for methanol oxidation[J]. Journal of Combustion Science and Technology, 2009, 15(6): 557. [百度学术]
LINDSTEDT R P,MEYER M P. A dimensionally reduced reaction mechanism for methanol oxidation[J]. Proceedings of the Combustion Institute,2002, 29: 1395. [百度学术]
ZHANG Jing, ZHANG Yang. Reduced mechanism generation for methanol-based toluene reference fuel with combined reduction methods[J]. Fuel, 2019, 247: 135. [百度学术]
ZHANG Fan, SHUAI Shijin, WANG Zhi, et al. A detailed oxidation mechanism for the prediction of formaldehyde emission from methanol-gasoline SI engines[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3151. [百度学术]
YAO Tong, PEI Yuanjiang, ZHONG Beijing, et al. A compact skeletal mechanism for N-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations[J]. Fuel, 2017, 191:339. [百度学术]
CARSTEN O, TAMÁS V , ÉVA V, et al. Development of an ethanol combustion mechanism based on a hierarchical optimization approach[J]. International Journal of Chemical Kinetics, 2016, 48(8): 423. [百度学术]
CARSTEN O, TAMÁS V, ÉVA V, et al. Uncertainty quantification of a newly optimized methanol and formaldehyde combustion mechanism[J]. Combustion and Flame, 2017, 186: 45. [百度学术]
MAGNUS F, ANDREA B, ALBERTO C, et al. A toolbox for optimization of chemical kinetic mechanisms[J]. Computer Physics Communications, 2021, 264: 107. [百度学术]
KYLE E N, SUNG C, MANDHAPATI P R. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J]. Combustion and Flame, 2010, 157(9): 1760. [百度学术]
LIU Z, YANG L, ENZHE S, et al. Development of a reduced multi-component combustion mechanism for a diesel/natural gas dual fuel engine by cross-reaction analysis[J]. Fuel, 2021, 293: 120. [百度学术]
SUN Wenting, CHEN Zheng, GOU Xiaolong, et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms[J]. Combustion and Flame, 2010,157(7):1298. [百度学术]
KEITH J L. The development of the arrhenius equation[J]. Journal of Chemical Education, 1984, 61(6): 494. [百度学术]
RICHARD O, YOUNGCHUL R, MANUELA G D, et al. Investigation of mixing and temperature effects on HC/CO emissions for highly dilute low temperature combustion in a light duty diesel engine[J]. SAE World Congress & Exhibition, 2007(1): 193. [百度学术]
PINZÓN LT,MATHIEU O,MULVIHILL C R, et al. Ignition delay time and H2O measurements during methanol oxidation behind reflecte d shock waves[J]. Combustion and Flame, 2019, 203: 143. [百度学术]
EGOLFOPULOS F N,DU D X,LAW C K. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes[J]. Combustion Science and Technology, 1992, 83(1/3): 33. [百度学术]