摘要
良渚文化因出土了大量精美的玉器而闻名世界,但玉料的来源存在着较大的争议,这是探讨良渚文化是否为本土文明的关键线索之一。除了被赋予的社会属性以外,玉首先是特定地质作用下形成的矿产资源,这决定了地球科学是古玉研究中极为重要的一环。以地球科学的思想和方法为指导,结合良渚玉器的矿物特征、岩石结构、化学成分等剖析了其携带的地质信息,探讨了良渚玉料和小梅岭软玉的亲缘性,支持了良渚文化的本土起源。
良渚文化是长江下游地区新石器时代晚期最重要的文化遗存之一,出土了大量种类丰富、图案优美、工艺精湛的玉
本文结合前人的考古和地质成果多角度地对良渚玉器携带的地质信息进行了破译,并针对性地与上述潜在的玉料来源进行了比对,以讨论良渚先民用玉的地质源头。
长期以来地质学家主要使用破坏性的测试方法对软玉的矿物组成、结构构造、化学成分等进行研究;而良渚玉器是非常珍贵的文物,其稀少性、独特性、不可再生性等诸多特性决定了考古学家倾向使用无损测试的方法对其进行探
软玉是一种主要由透闪石或阳起石及少量其他矿物构成的变质岩,其矿物共生组合不是任意的,主要取决于形成软玉时的物质来源和相关地质作用的物理化学条
从地理位置上看,小梅岭玉矿不仅与各个良渚文化遗址近在咫尺(

图1 小梅岭玉矿及部分良渚遗址的分布
Fig.1 Distribution map of Xiaomeiling nephrite and some Liangzhu sites
变质岩的结构具有非常重要的指示意义,可以反映变质岩的形成过程、期次、变质程度等多方面的信息,也是变质岩分类命名的重要依

图2 良渚玉器中较自形的变斑晶和变斑晶集合体带
Fig.2 Some idioblastic porphyroblasts and porphyroblast aggregate bands in Liangzhu jades
小梅岭软玉中的透闪石变斑晶发育了被微晶透闪石沿边缘及解理进行取代的多种交代残留结构(图

图3 小梅岭软玉的结构演化
Fig.3 Texture evolution of Xiaomeiling nephrite

图4 良渚钺中的变斑晶形态(a)与小梅岭软玉中透辉石的形态(b、c、d)
Fig.4 Morphology of porphyroblasts in Liangzhu Yue (a) and diopsides in Xiaomeiling nephrite (b, c, and d)
小梅岭软玉产于晚燕山期庙西花岗岩与二叠纪栖霞组碳酸盐岩的接触
前人的研究已经表明良渚玉器中缺乏Cr、Co、Ni等化学成

图5 部分良渚玉器与东亚地区部分碳酸盐岩型软玉中碱金属(Na2O+K2O)的平均质量分数
Fig.5 Average alkali metal (Na2O+K2O) contents in some Liangzhu jades and carbonate rock-related nephrites within East Asia
长江中下游酸性又潮湿的埋藏条件使得Na、K等活动性元素易从良渚玉器中流失,诱发角闪石结构的破坏,因此余杭遗址群出土的玉器较其他良渚遗址出土的玉器白化程度更明显的现象很可能源于玉料中K、Na含量的差异。需要注意的是这些良渚玉器的主要化学成分是由非破坏性的质子激发X射线荧光分析技术测定的,皆为玉器风化表面的成分,换言之这些玉器在埋藏前应含有更为丰富的K和Na,而目前仅有小梅岭软玉与之匹配,这也成为小梅岭软玉和良渚玉器用料之间的关键纽带之一。
由于高城墩遗址和余杭遗址群出土的良渚玉器表面的Sr含量明显低于小梅岭软玉中的Sr含量,有学者推测小梅岭软玉不是良渚先民用玉的来
红外及拉曼光谱是分析矿物结构的无损技术,已在古玉研究中得到广泛应用。良渚玉器的红外及拉曼光
对钙角闪石族而言,拉曼光谱中675 c
软玉矿床的分布往往是区域性的,如塔里木盆地南缘分布的碳酸盐岩型软玉成矿
句容市伏牛山矽卡岩型铜矿主要产于晚燕山期花岗闪长斑岩与栖霞组和青龙组碳酸盐岩的接触带,矽卡岩矿物包括石榴子石、透辉石、透闪石、绿帘石、阳起石、符山石
经过几千年的埋藏,良渚玉器携带的地质信息或多或少发生了变化,应将它们视为风化岩石进行研究。在对良渚玉器进行溯源时既要考虑外部环境对玉器产生的影响,也应注意玉器自身成分与结构对风化做出的响应。良渚玉器在矿物组成、晶体形态、岩石结构、化学成分、红外及拉曼光谱等诸多方面残留的信息仍表明小梅岭软玉是良渚先民软玉用料的重要来源之一,这是良渚文化本土起源的直接证据,而长江下游地区潜在的软玉矿床为良渚先民提供了其他的用料可能。
从玉器作坊出土的加工玉料可以看出,良渚文化已形成了水平较高的玉石加工体系,而良渚文化、崧泽文化、马家浜文化在玉器上表现出的演化步调诠释了良渚先民在代代相传中日渐精湛的制玉技艺,这种文化上的传承是良渚文化作为太湖地区本土文化的另一重要见证。
作者贡献声明
李 平:设计研究思路,参与论文撰写与修改。
廖宗廷:提出建议并参与论文修改。
周征宇:提出建议并参与论文修改。
参考文献
何国俊. 良渚文化玉器原料来源探讨[J]. 南方文物, 2005, 4: 28. [百度学术]
HE Guojun. Jadeware raw material source of inquiry for Liangzhu Culture[J]. Cultural Relics in Southern China, 2005, 5: 28. [百度学术]
郑建. 寺墩遗址出土良渚文化玉器鉴定报告[C]//东方文明之光:良渚文化发现60周年记纪念文集(1936—1996). 海口:海南国际新闻出版中心, 1996: 432-441. [百度学术]
ZHENG Jian. The appraisal report on Liangzhu jades unearthed from Sidun site[C]//The Light of Oriental Civilization: Collectied Essays in Commemoration of the 60th Anniversary of the Discovery of Liangzhu Culture (1936—1996). Haikou: Hainan International Press and Publication Center, 1996: 432-441. [百度学术]
闻广, 荆志淳. 福泉山与崧泽玉器地质考古学研究——中国古玉地质考古学研究之二[J]. 考古, 1993, 7: 627. [百度学术]
WEN Guang, JING Zhichun. A geoarchaeological study of ancient Chinese jade (Ⅱ): jade from Fuquanshan and Songze sites[J]. Archaeology, 1993, 7: 627. [百度学术]
LI P, LIAO Z, ZHOU Z, et al. Evidences from infrared and Raman spectra: Xiaomeiling is one reasonable provenance of nephrite materials used in Liangzhu Culture[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 120012. [百度学术]
顾冬红, 干福熹, 承焕生, 等. 江阴高城墩遗址出土良渚文化玉器的无损分析研究[J]. 文物保护与考古科学, 2010, 22(4): 42. [百度学术]
GU Donghong, GAN Fuxi, CHENG Huansheng, et al. Non-destructive analysis of Liangzhu Culture jade artifacts from the Gaochengdun site of Jiangyin[J]. Sciences of Conservation and Archaeology, 2010, 22(4): 42. [百度学术]
GAN F X, CAO J Y, CHENG H S, et al. The non-destructive analysis of ancient jade artifacts unearthed from the Liangzhu sites at Yuhang, Zhejiang[J]. Science China Technological Sciences, 2010, 53(12): 3404. [百度学术]
古方. 良渚玉器部分玉料来源的蠡测[J]. 华夏考古, 2007, 1: 75. [百度学术]
GU Fang. Research on the source of some material of Liangzhu jades[J]. Huaxia Archaeology, 2007, 7: 75. [百度学术]
李约瑟. 中国科学技术史[M]. 北京: 科学出版社, 1976. [百度学术]
NEEDHAM J T M. History of science and technology in China[M]. Beijing: Science Press, 1976. [百度学术]
CASADIO F, DOUGLAS J G, FABER K T. Noninvasive methods for the investigation of ancient Chinese jades: an integrated analytical approach[J]. Analytical and Bioanalytical Chemistry, 2007, 387(3): 791. [百度学术]
肖渊甫, 郑荣才, 邓江红. 岩石学简明教程[M]. 北京: 地质出版社, 2016. [百度学术]
XIAO Yuanfu, ZHENG Rongcai, DENG Jianghong. Petrology introduction[M]. Beijing: Geological Publishing House, 2016. [百度学术]
方向明. 成组玉礼器与良渚文明模式[J]. 博物院, 2019, 2: 16. [百度学术]
FANG Xiangming. Group of ritual jades and Liangzhu cultural pattern[J]. Museum, 2019, 2: 16. [百度学术]
郑建. 吴县张陵山东山遗址出土玉器鉴定报告[J]. 文物, 1986, 10: 39. [百度学术]
ZHENG Jian. Appraisal report on jades unearthed from Dongshan site of Zhanglingshan in Wu County[J]. Cultural Relics, 1986, 10: 39. [百度学术]
COOK F A. Raised relief on nephrite jade artifacts: observations, explanations and implications[J]. Journal of Archaeological Science, 2013, 40(2): 943. [百度学术]
LI P, LIAO Z, ZHOU Z. The residual geological information in Liangzhu jades: implications for their provenance[J]. Proceedings of the Geologists’ Association, 2022, 133(3): 256. [百度学术]
ZHANG C, YU X, JIANG T. Mineral association and graphite inclusions in nephrite jade from Liaoning, Northeast China: implications for metamorphic conditions and ore genesis[J]. Geoscience Frontiers, 2019, 10: 425. [百度学术]
王时麒, 段体玉, 郑姿姿. 岫岩软玉(透闪石玉)的矿物岩石学特征及成矿模式[J]. 岩石矿物学杂志, 2002, 21(S1): 79. [百度学术]
WANG Shiqi, DUAN Tiyu, ZHENG Zizi. Mineralogical and petrological characteristics of Xiuyan nephrite and its minerogenetic model[J]. Acta Petrologica et Mineralogica, 2002, 21(S1): 79. [百度学术]
SEN G. Metamorphism and metamorphic rocks[M]. Berlin, Heidelberg: Springer, 2014. [百度学术]
PHILPOTTS A R, AGUE J J. Principles of igneous and metamorphic petrology[M]. Cambridge:Cambridge University Press, 2009. [百度学术]
ZHANG H, BLOOM P R, NATER E A. Change in surface area and dissolution rates during hornblende dissolution at pH 4.0[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1681. [百度学术]
ISRAELI Y, EMMANUEL S. Impact of grain size and rock composition on simulated rock weathering[J]. Earth Surface Dynamics, 2018, 6(2): 319. [百度学术]
JIANG Y, SHI G, XU L, et al. Mineralogy and geochemistry of nephrite jade from Yinggelike deposit, Altyn Tagh (Xinjiang, NW China)[J]. Minerals, 2020, 10: 418. [百度学术]
LIU Y, ZHANG R Q, ZHANG Z Y, et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: implications for the genesis of a magnesian skarn deposit[J]. Lithos, 2015, 212/215: 128. [百度学术]
LIU Y, DENG J, SHI G, et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2011, 42: 440. [百度学术]
YUI T F, YEH H W, LEE C W. Stable isotope studies of nephrite deposits from Fengtien, Taiwan[J]. Geochimica et Cosmochimica Acta, 1988, 52(3): 593. [百度学术]
YUI T F, USUKI T, CHEN C Y, et al. Dating thin zircon rims by NanoSIMS: the Fengtien nephrite (Taiwan) is the youngest jade on Earth[J]. International Geology Review, 2014, 56(16): 1932. [百度学术]
PROKHOR S A. The genesis of nephrite and emplacement of the nephrite-bearing ultramafic complexes of East Sayan[J]. International Geology Review, 1991, 33: 290. [百度学术]
JIANG B, BAI F, ZHAO J. Mineralogical and geochemical characteristics of green nephrite from Kutcho, Northern British Columbia, Canada[J]. Lithos, 2021, 388/389: 106030. [百度学术]
吴青蔓, 吴瑞华, 赵洋洋, 等. 加拿大Cassiar碧玉的宝石矿物学特征研究[J]. 岩石矿物学杂志, 2014, 33(S1): 43. [百度学术]
WU Qingman, WU Ruihua, ZHAO Yangyang, et al. Gemological and mineralogical characteristics of green nephrite from Cassiar,Canada[J]. Acta Petrologica et Mineralogica, 2014, 33(S1): 43. [百度学术]
KIM W S. Nephrite from Chuncheon, Korea[J]. The Journal of Gemmology, 1995, 24(8): 547. [百度学术]
FENG Y, HE X, JING Y. A new model for the formation of nephrite deposits: a case study of the Chuncheon nephrite deposit, South Korea[J]. Ore Geology Reviews, 2022, 141: 104655. [百度学术]
LIU Y, ZHANG R, ABUDUWAYITI M, et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China: implication for a magnesium skarn[J]. Ore Geology Reviews, 2016, 72: 699. [百度学术]
钟华邦. 梅岭玉地质特征及成因探讨[J]. 宝石和宝石学杂志, 2000, 2(1): 39. [百度学术]
ZHONG Huabang. Study on the geological characteristics and genesis of Meiling jade[J]. Journal of Gems and Gemmology, 2000, 2(1): 39. [百度学术]
周述蓉, 罗清华, 贺云翱, 等. 氩氩同位素定年法在殷商文化玉器考古上之应用[C]//2004年安阳殷商文明国际学术研讨会. 北京: 社会科学文献出版社,2004: 615-622. [百度学术]
ZHOU Shurong, LUO Qinghua, HE Yunxiang, et al. The application of Ar-Ar dating in jade archaeology of Yin Shang culture[C]//2004 Anyang Yinshang Civilization International Symposium. Beijing: Social Sciences Academic Press, 2004: 615-622. [百度学术]
舒良树, 周新民. 中国东南部晚中生代构造作用[J]. 地质评论, 2002, 48(3): 249. [百度学术]
SHU Liangshu, ZHOU Xinmin. Late mesozoic tectonism of Southeast China[J]. Geological Review, 2002, 38(3): 249. [百度学术]
HE Z Y, XU X S. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of paleo-Pacific plate subduction[J]. Chemical Geology, 2012, 328: 208. [百度学术]
MAO J, LIU P, GOLDFARB R J, et al. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia[J]. Ore Geology Reviews, 2021, 136: 104270. [百度学术]
ZHOU X, SUN T, SHEN W, et al. Petrogenesis of mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution[J]. Episodes, 2006, 29(1): 26. [百度学术]
CONDIE K C, DENGATE J, CULLERS R L. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA[J]. Geochimica et Cosmochimica Acta, 1995, 59(2): 279. [百度学术]
MIDDELBURG J J, VAN DER WEIJDEN C H , WOITTIEZ J R W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks[J]. Chemical Geology, 1988, 68(3/4): 253. [百度学术]
MA Y, LIU C. Sr isotope evolution during chemical weathering of granites-impact of relative weathering rates of minerals[J]. Science in China Series D: Earth Sciences, 2001, 44(8): 726. [百度学术]
徐海鹏, 丰爱平, 王时麒, 等. 辽宁岫岩软玉砂矿的成因及资源保护[J]. 资源科学, 2000, 22(2): 24. [百度学术]
XU Haipeng, FENG Aiping, WANG Shiqi, et al. The origin of Liaoning Xiuyan nephrite placer resources and their protection[J]. Resource Geology, 2000, 22(2): 24. [百度学术]
向芳, 王成善, 杨永富, 等. 金沙遗址玉器的材质来源探讨[J]. 江汉考古, 2008, 3: 104. [百度学术]
XIANG Fang, WANG Chengshan, YANG Yongfu, et al. A study of jadestone sources at the Jinsha site[J]. Jianghan Archaeology, 2008, 3: 104. [百度学术]
KOSTOV R I, PROTOCHRISTOV C, STOYANOV C, et al. Micro-PIXE geochemical fingerprinting of nephrite Neolithic artifacts from Southwest Bulgaria[J]. Geoarchaeology, 2012, 27(5): 457. [百度学术]
BERSANI D, ANDò S, SCROCCO L, et al. Composition of amphiboles in the tremolite–ferro–actinolite series by raman spectroscopy[J]. Minerals, 2019, 9(8): 491. [百度学术]
DELLA VENTURA G, HAWTHORNE F C, ROBERT J L, et al. Synthesis and infrared spectroscopy of amphiboles along the tremolite-pargasite join[J]. European Journal of Mineralogy, 2003, 15(2): 341. [百度学术]
WAESELMANN N, SCHLÜTER J, MALCHEREK T, et al. Nondestructive determination of the amphibole crystal-chemical formulae by Raman spectroscopy: one step closer[J]. Journal of Raman Spectroscopy, 2019, 51(9): 1530. [百度学术]
SBROSCIA M, DELLA VENTURA G, IEZZI G, et al. Quantifying the A-site occupancy in amphiboles: a Raman study in the OH-stretching region[J]. European Journal of Mineralogy, 2018, 30: 429. [百度学术]
DELLA VENTURA G, HAWTHORNE F C, ROBERT J L, et al. Short-range order of cations in synthetic amphiboles along the richterite-pargasite join[J]. European Journal of Mineralogy, 1999, 11(1): 79. [百度学术]
GAO K, SHI G, WANG M, et al. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, Northwest China[J]. Geoscience Frontiers, 2019, 10(4): 1597. [百度学术]
LEAMING S F. Jade in Canada[J]. Geological Survey of Canada Papers, 1978,19: 1. [百度学术]
HARLOW G E, SORENSEN S S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections[J]. International Geology Review, 2005, 47(2): 113. [百度学术]
周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8): 1665. [百度学术]
ZHOU Taofa, FAN Yu, YUAN Feng. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 2008, 24(8): 1665. [百度学术]
SUN W, YUAN F, JOWITT S M, et al. Geochronology and geochemistry of the Fe ore-bearing Zhonggu intrusions of the Ningwu Basin: implications for tectonic setting and contemporaneous Cu-Au mineralization in the Middle-Lower Yangzte Metallogenic Belt[J]. Ore Geology Reviews, 2017, 84: 246. [百度学术]
肖梦龙. 试论江南吴国青铜器[J]. 东南文化, 1986(1): 96. [百度学术]
XIAO Menglong. On the bronzes of Wu state in Jiangnan[J]. Southeast Culture, 1986(1): 96. [百度学术]
杨立新. 皖南古代铜矿的发现及其历史价值[J]. 东南文化, 1991(2): 131. [百度学术]
YANG Lixin. The discovery of ancient copper deposits in southern Anhui and its historical value[J]. Southeast Culture, 1991(2): 131. [百度学术]
许继峰, 王强, 徐义刚, 等. 宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制[J]. 岩石学报, 2001, 17(4): 576. [百度学术]
XU Jifeng, WANG Qiang, XU Yigang, et al. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area: constraint to origin of magma with HREE and Y depletion[J]. Acta Petrologica Sinica, 2001, 17(4): 576. [百度学术]
汪希, 金鑫, 罗鸣. 江苏省句容市伏牛山北部矿区铜矿成因及找矿方向[J]. 西部探矿工程, 2016, 28(2): 117. [百度学术]
WANG Xi, JIN Xin, LUO Ming. The origin and prospecting direction of copper deposits in the northern Funiushan mining area, Jurong, Jiangsu Province[J]. West-China Exploration Engineering, 2016, 28(2): 117. [百度学术]