摘要
原始近场动力学的控制方程由保守力做功的能量方程得到,从而无法合理反映材料的黏弹性变形行为和系统能量耗散。针对这一问题,提出一种考虑非保守力做功的近场动力学方法,其理论框架包括两部分:①材料点的黏弹性相互作用及其运动方程;②键的率相关断裂准则。在描述材料点运动方面,基于对混凝土变形机制的认识,提出了材料点之间的黏弹性相互作用模型,采用考虑能量耗散的哈密尔顿原理建立了黏弹性运动方程,利用黏弹性近场动力学方法与连续介质力学的能量密度等效的方法提出了弹性参数和黏性参数确定方法;在描述键的断裂和材料强度方面,利用混凝土动态单轴S强度准则发展了键的率相关断裂准则。通过数值实验,探讨了黏弹性近场动力学方法的功能和优越性。结果表明,发展的近场动力方法能够合理反映加载速率对混凝土变形、强度和开裂行为的影响。
在实际工程中,混凝土结构通常是带裂缝工作的,并且破坏过程具有强非连续特性。传统连续介质力学方法为数值计算提供了丰富的理论基础,基于连续介质力学的部分数值方法为混凝土非连续变形的模拟提供了方法和可能性,例如扩展有限元方
本文目的是发展包含非保守力做功的近场动力学方法。基于混凝土的变形机理,确定材料点的黏弹性相互作用模式,发展黏弹性近场动力学材料点的运动方程和键的断裂准则。对于材料点的运动,通过包含非保守力所做功的能量方程获得控制方程。对于键的破坏,利用混凝土动态单轴S强度准则发展的率相关断裂准则来描述。并通过数值算例验证和应用所提出的近场动力学方法。
近场动力学的基本思想是将连续材料离散为具有体积V和质量m的有限个材料点,任意材料点i与一定范围H(i)内的其他材料点都具有相互作用。材料点i的域内所有材料点相互作用的集合控制着点i的运动,该运动产生的惯性力与总的相互作用力保持平衡,其运动方程
(1) |
式中:ρ(i)为密度;u(i)为位移;为惯性力;b(i)为外界作用力;f(i)(j)与f(j)(i)为i与j之间的键力,分别表示j对i和i对j的键力,其表达式见文献[
(2) |
式中:k为微弹性模量;s为键拉伸,其等于键变形后长度与初始长度的差与初始长度的比值;μ为历史函数。
现有研究表

图1 近场动力学黏弹性相互作用模型
Fig. 1 Viscoelastic interaction model of peridynamics
基于发展的黏弹性相互作用模型,通过包括非保守力做功的哈密尔顿原
(3) |
式中:δ为变分符号;t为时间; Wnc为非保守力所做的功;T为总动能;U为所有保守力产生的总势能。T、U表达式如
(4) |
(5) |
式中:L为拉格朗日函数,L=TU;Φ为瑞利耗散能函
(6) |
将
(7) |
参考键力密度矢量f(i)(j)和f(j)(i)的定义,将轴向阻尼对力密度矢量定义为
(8) |
式中:c(i)(j)和c(j)(i)相等,统一用c来表示。将
(9) |
新建立的运动方程既包括由弹簧力和体力组成的保守力项,也包括由阻尼力组成的非保守力项。当非保守力项等于零时,黏弹性运动方程式退化为原始近场动力学运动方程,它是发展的运动方程一个特例。
在黏弹性近场动力学中,同样采用应变率相关的最大拉应变准则作为材料点的断裂准则,结合断裂准则的键力密度矢量可表示为
(10) |
式中:为弹簧的弹力;为黏壶的阻尼力;μ被重新定义为
(11) |
是断裂准则,为键拉伸率为条件下的动态极限键拉伸。
对于黏弹性近场动力学方法的率相关断裂准则,通过定义动态极限键拉伸来描述极限键拉伸随加载速率的增加,键拉伸的动态增长因子定义为:。对于强度的DIFs,目前已经提出了许多率相关公
(12) |
式中:为对数键拉伸率,;λ 和 χmax是2个参数,其确定方法与Lu
发展的黏弹性近场动力学中包含2类材料参数:微弹性参数和微黏性参数,通过将黏弹性近场动力学和连续介质力学之间的能量密度进行等效,即可获得近场动力学的材料参数。
在二维条件下,连续介质力学的黏弹性本构关系被用来计算耗散能密度,其方程如
(13) |
式中:D为弹性刚度矩阵;C为黏性矩阵;ε为应变。D的表达式为
(14) |
式中:K和G分别为材料的弹性体积模量和弹性剪切模量,表示为
(15) |
类似地,黏性矩阵C由
(16) |
式中:和分别为材料的黏性体积参数和黏性剪切参数;ζ为黏性泊松比。由于黏性参数表征应力和应变率之间的关系, 定义为横向正应变率与轴向正应变率之比,。
在连续介质力学中,根据应变能的定义,弹性应变能密度和耗散能密度可以分别表示为
(17) |
根据做功的定义,黏弹性近场动力学弹性应变能密度和耗散能密度可以使用极坐标(θ, ξ)表示为
(18) |
任何变形模式都可以分解为2种基本的变形模式:体积变形和纯剪切变形。对于体积变形模式,只有正应变ε 在板中产生,可得到体积变形模式下微弹性参数κ 与微黏性参数τ 。
(19) |
同理,对于纯剪切变形模式,当物体变形时,只有工程剪应变γ 在板中产生,可以得到纯剪切变形模式下的微弹性参数κ 与微黏性参数τ 。
(20) |
由于2个材料点之间的弹簧力和阻尼力始终沿其轴向,是一个一维分量,因此,在黏弹性近场动力学中应该只有一个微弹性参数和一个微黏性参数。联立
(21) |
采用FORTRAN 90语言编写了黏弹性近场动力学程序,给出2个算例:动荷载作用下裂纹的分叉模拟和含圆孔各向同性平板的拉伸破坏。

图2 试验中不同应力状态下板的破坏模式
Fig. 2 Failure modes of plates in different stress states in experiment

图3 模型几何尺寸及荷载条件
Fig. 3 Geometric dimensions and load conditions of the model
在σ2 = 0.5MPa的应力状态下,黏弹性近场动力学模拟的裂纹扩展过程材料点的损伤如

图4 不同应力状态下板的破坏模式
Fig. 4 Failure modes of plates in different stress states
数值试验研究了在板中心具有圆孔的二维混凝土板在动态拉伸荷载下的模拟,圆孔的直径是10mm,施加在板上的几何参数和荷载条件如

图5 模型几何尺寸及荷载条件
Fig. 5 Geometric dimensions and load conditions of the model
原始近场动力学和黏弹性近场动力学模拟的混凝土板在不同加载速率下的荷载-位移曲线与损伤破坏模式分别如

图6 不同加载速度下原始近场动力学(PD)与黏弹性近场动力学(VPD)的荷载-位移曲线对比
Fig. 6 Comparison of load-displacement curves between peridynamics and viscoelastic peridynamics at different loading velocities

图7 原始近场动力学与黏弹性近场动力学破坏模式对比
Fig. 7 Comparison of failure modes between original peridynamics and viscoelastic peridynamics
在键型近场动力学方法基础上,发展了黏弹性近场动力学材料点相互作用模型,根据材料点相互作用模型推导了黏弹性键型近场动力学运动方程,通过与连续介质力学能量密度等效获得了材料参数的确定方法。利用动荷载下混凝土板的数值算例,验证了所提黏弹性近场动力学方法的有效性。主要结论如下:
(1)基于混凝土的变形机制,建立了材料点的黏弹性相互作用模型,基于哈密尔顿原理,推导了黏弹性运动方程。该方程合理反映了混凝土在变形过程中由非弹性变形所产生的能量耗散以及混凝土材料的动态强度与变形行为。通过近场动力学和连续介质力学之间的能量密度等效的方法,建立了近场动力学微弹性和微黏性参数的标定方法。该方法所得到的微弹性参数与原始近场动力学微弹性参数一致。
(2)利用黏弹性近场动力学方法模拟了不同加载速率下的混凝土构件的破坏模式,验证了该方法在模拟动荷载下混凝土强度、变形和裂纹扩展模式方面的合理性。通过模拟混凝土带有圆孔板在动态拉伸荷载下的力学性能,得到了受加载速率影响的破坏模式。
所提的黏弹性近场动力学方法能够合理反映混凝土在非弹性变形下的能量耗散以及不同加载速率和应力状态下的裂纹扩展和分叉,为混凝土动态力学性能的描述提供了一种有效的数值方法和工具。对于混凝土在更加真实的三维情况下的力学性能和破坏状态的模拟还有待进一步研究,并且对于复杂应力状态下的力学性能研究也亟待发展。
作者贡献声明
路德春:项目负责人,提供研究平台、构思论文、指导模型构建及分析数据、修改论文。
宋志强:构建模型、分析数据、实现程序、呈现结果及撰写论文。
王国盛:项目负责人,提供理论及创新思路、提供编程帮助、构思与修改论文。
参考文献
MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131:AID-NME726>3.0.CO;2-J. [百度学术]
HALL W S. Boundary element method [M]. Dordrecht: Springer Netherlands, 1994. [百度学术]
LISZKA T, ORKISZ J. The finite difference method at arbitrary irregular grids and its application in applied mechanics [J]. Computers and Structures, 1980, 11(1/2): 83. DOI: 10.1016/0045-7949(80)90149-2. [百度学术]
LUCŸ L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 82(2): 1013. DOI: 10.1086/112164. [百度学术]
BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229. DOI: 10.1002/nme.1620370205. [百度学术]
SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 481: 175. DOI: 10.1016/S0022-5096(99)00029-0. [百度学术]
HAN F, LUBINEAU G, AZDOUD Y. Adaptive coupling between damage mechanics and peridynamics: A route for objective simulation of material degradation up to complete failure [J]. Journal of the Mechanics and Physics of Solids, 2016, 94: 453. DOI: 10.1016/j.jmps.2016.05.017. [百度学术]
REN H L, ZHUANG X Y, RABCZUK T. A new peridynamic formulation with shear deformation for elastic solid [J]. Journal of Micromechanics and Molecular Physics, 2016, 1(2): 1650009. DOI: 10.1142/S2424913016500090. [百度学术]
AMANI J, OTERKUS E, AREIAS P, et al. A non-ordinary state-based peridynamics formulation for thermoplastic fracture [J]. International Journal of Impact Engineering, 2016, 87: 83. DOI: 10.1016/j.ijimpeng.2015.06.019. [百度学术]
REN H L, ZHUANG X Y, RABCZUK T. Dual-horizon peridynamics: A stable solution to varying horizons [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762. DOI: 10.1016/j.cma.2016.12.031. [百度学术]
ZHANG Y A, DENG H W, DENG J R, et al. Peridynamic simulation of crack propagation of non-homogeneous brittle rock-like materials [J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102438. DOI: 10.1016/j.tafmec.2019.102438. [百度学术]
ZHU F, ZHAO J D. Peridynamic modelling of blasting induced rock fractures [J]. Journal of the Mechanics and Physics of Solids, 2021, 153: 104469. DOI: 10.1016/j.jmps.2021.104469. [百度学术]
WANG Y W, HAN F, LUBINEAU G. Strength-induced peridynamic modeling and simulation of fractures in brittle materials [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374(1): 113558. DOI: 10.1016/j.cma.2020.113558. [百度学术]
YU H T, CHEN X Z. A viscoelastic micropolar peridynamic model for quasi-brittle materials incorporating loading-rate effects [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113897. DOI: 10.1016/j.cma.2021.113897. [百度学术]
KLEPACZKO J R, BRARA A. An experimental method for dynamic tensile testing of concrete by spalling [J]. International Journal of Impact Engineering, 2001, 254: 387. DOI: 10.1016/S0734-743X(00)00050-6. [百度学术]
WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 321: 605. DOI: 10.1016/j.ijimpeng.2005.05.008. [百度学术]
LU Y B, LI Q M. About the dynamic uniaxial tensile strength of concrete-like materials [J]. International Journal of Impact Engineering, 2011, 384: 171. DOI: 10.1016/j.ijimpeng.2010.10.028. [百度学术]
ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 474: 1411. DOI: 10.1007/s00603-013-0463-y. [百度学术]
AL-SALLOUM Y, ALMUSALLAM T, IBRAHIM S M, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments [J]. Cement and Concrete Composites, 2015, 55: 34. DOI: 10.1016/j.cemconcomp.2014.07.011. [百度学术]
LU D C, WANG G S, DU X L, et al. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete [J]. International Journal of Impact Engineering, 2017, 103: 124. DOI: 10.1016/j.ijimpeng.2017.01.011. [百度学术]
REN B, WU C T, ASKARI E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis [J]. International Journal of Impact Engineering, 2017, 99: 14. DOI: 10.1016/j.ijimpeng.2016.09.003. [百度学术]
YANG D, DONG W, LIU X F, et al. Investigation on mode-I crack propagation in concrete using bond-based peridynamics with a new damage model [J]. Engineering Fracture Mechanics, 2018, 199: 567. DOI: 10.1016/j.engfracmech.2018.06.019. [百度学术]
ISIET M, MIŠKOVIĆ I, MIŠKOVIĆ S. Review of peridynamic modelling of material failure and damage due to impact [J]. International Journal of Impact Engineering, 2021, 147: 103740. DOI: 10.1016/j.ijimpeng.2020.103740. [百度学术]
WU P, YANG F, CHEN Z G, et al. Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete [J]. Engineering Fracture Mechanics, 2021, 253: 107863. DOI: 10.1016/j.engfracmech.2021.107863. [百度学术]
HUANG X P, KONG X Z, CHEN Z Y, et al. Peridynamics modelling of dynamic tensile failure in concrete [J]. International Journal of Impact Engineering, 2021, 155: 103918. DOI: 10.1016/j.ijimpeng.2021.103918. [百度学术]
JIN Y D, LI L, JIA Y, et al. Numerical study of shrinkage and heating induced cracking in concrete materials and influence of inclusion stiffness with Peridynamics method [J]. Computers and Geotechnics, 2021, 133: 103998. DOI: 10.1016/j.compgeo.2021.103998. [百度学术]
SILLING S A. Solitary waves in a peridynamic elastic solid [J]. Journal of the Mechanics and Physics of Solids, 2016, 96: 121. DOI: 10.1016/j.jmps.2016.06.001. [百度学术]
SILLING S A. Attenuation of waves in a viscoelastic peridynamic medium [J]. Mathematics and Mechanics of Solids, 2019, 24(11): 3597. DOI: 10.1177/1081286519847241. [百度学术]
WU L W, HUANG D, BOBARU F. A reformulated rate-dependent visco-elastic model for dynamic deformation and fracture of PMMA with peridynamics [J]. International Journal of Impact Engineering, 2021, 149: 103791. DOI: 10.1016/j.ijimpeng.2020.103791. [百度学术]
BEHERA D, ROY P, MADENCI E. Peridynamic modeling of bonded-lap joints with viscoelastic adhesives in the presence of finite deformation [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 374: 113584. DOI: 10.1016/j.cma.2020.113584. [百度学术]
WU L W, HUANG D, XU Y P, et al. A rate-dependent dynamic damage model in peridynamics for concrete under impact loading [J]. International Journal of Damage Mechanics, 2020, 297: 1035. DOI: 10.1177/1056789519901162. [百度学术]
TONG Y, SHEN W Q, SHAO J F, et al. A new bond model in peridynamics theory for progressive failure in cohesive brittle materials [J]. Engineering Fracture Mechanics, 2020, 223: 106767. DOI: 10.1016/j.engfracmech.2019.106767. [百度学术]
GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 259: 869. DOI: 10.1016/S0734-743X(01)00020-3. [百度学术]
ADAM S. Dynamic strength criterion for concrete [J]. Journal of Engineering Mechanics, 2004, 130(12): 1428. DOI: 10.1061/(ASCE)0733-9399(2004)130:12(1428). [百度学术]
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76. DOI: 10.1016/j.ijimpeng.2013.04.005. [百度学术]
WANG G S, LU D C, DU X L, et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 250. DOI: 10.1016/j.jmps.2018.06.019. [百度学术]
SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics [J]. Computers & Structures, 2005, 83(17/18): 1526. DOI: 10.1016/j.compstruc.2004.11.026. [百度学术]
MADENCI E, OTERKUS E. Peridynamic theory and its applications [M]. New York: Springer, 2014. [百度学术]
ROY S, BHADRA S. Study of nonlinear dissipative pulse propagation under the combined effect of two-photon absorption and gain dispersion: A variational approach involving Rayleigh's dissipation function [J]. Physica D: Nonlinear Phenomena, 2007, 23(22): 103. DOI: 10.1016/j.physd. 2007.06.002. [百度学术]
HE J. Hamilton's principle for dynamical elasticity [J]. Applied Mathematics Letters, 2017, 72: 65. DOI: 10.1016/j.aml. 2017.04.008. [百度学术]
ZHENG D, LI Q B, WANG L B. A microscopic approach to rate effect on compressive strength of concrete [J]. Engineering Fracture Mechanics, 2005, 72(15): 2316. DOI: 10.1016/j.engfracmech.2005.01.012. [百度学术]
HAO Y, HAO H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests [J]. Construction and Building Materials, 2013, 48: 521. DOI: 10.1016/j.conbuildmat.2013.07.022. [百度学术]
SHI L L, WANG L C, SONG Y P, et al. Dynamic multiaxial strength and failure criterion of dam concrete [J]. Construction and Building Materials, 2014, 66: 181. DOI: 10.1016/j.conbuildmat.2014.05.076. [百度学术]
BOWDEN F P, BRUNTON J H, FIELD J E, et al. Controlled fracture of brittle solids and interruption of electrical current [J]. Nature, 1967, 216: 28. DOI: 10.1038/216038a0. [百度学术]
HA Y D, BOBARU F. Characteristics of dynamic brittle fracture captured with peridynamics [J]. Engineering Fracture Mechanics, 2011, 786: 1156. DOI: 10.1016/j.engfracmech. 2010.11.020. [百度学术]