摘要
噪声污染是重要的环境问题,研究如何设计吸声结构以降低环境中的噪声一直是一项富有挑战性的课题。相比于传统材料,超构材料因其低频吸声的突出优势,成为目前设计研究的热点。首先介绍2种主要的声学吸收机制:声学黏滞性理论和热传导理论。在此基础上,阐述了吸声结构的基本设计分析方法,包括阻抗分析方法、数值计算方法以及实验方法,其中阻抗分析方法主要介绍了阻抗匹配理论和复频率平面分析方法。接着,根据目前吸声结构的设计研究现状进行分类,深入介绍基于超构材料设计的研究进展,讨论了其实际应用和可能的发展方向,最后从结构设计、工作频带、结构尺寸、吸声效果方面对基于超材料的吸声结构进行了总结,并分析了其在实际应用和不同工况下面临的挑战。
随着工业和城镇化的不断发
噪声是声波的随机变化,声压、频率以及声源都是随时间瞬态变化

图1 发表论文的数量与出版年的关系
Fig. 1 Histogram of publication year and number of papers published
传统多孔材料的吸声基于其微孔结构,通过将声能转换为热能实现吸声。根据文献[
声学超构材料是一种由单元组成的人工周期性结
本文首先回顾了吸声的主要机制,包括声学黏滞性理论和热传导理论;简要介绍吸声结构的研究方法,主要有阻抗分析方法、仿真计算分析方法以及实验分析方法。在此基础上,根据目前已发表的文献对吸声结构进行分类和介绍,深入介绍基于超构材料设计的研究进展,并讨论其未来可能的发展方向。
由于实际媒质中存在黏滞作用,声波在其中传播时,会被吸收一部分声能,黏滞力的存在使得同一界面上相邻质点的运动速度存在差异,并且带动周围媒质质点运动,引起媒质的压缩和膨胀现象,形成温度梯度,进而产生热传
黏滞媒质中同一截面处相邻质点在运动过程中,由于黏滞力作用,在靠近壁面区域形成黏性边界层,如

图2 声波在管中传播的仿真结果
Fig. 2 Simulation results of sound propagation in straight tube
当声波在一个半径为a、长度为l的圆柱形管中沿着轴向(x轴)传播时,考虑管壁的黏滞作用时,运动方程
(1) |
由边界条件,可得到方程的解为
(2) |
为声速;为声压;、分别是半径为a处的声速和声压;K为流体导热率,;为零阶柱贝塞尔函数。由
声波在非理想媒质中传播时,会引起媒质质点离开平衡位置运动,并且与相邻媒质质点作用,压缩与其相邻的媒质。媒质具有弹性作用,会产生压缩和膨胀的变化,由此形成温度梯度,发生不可逆的热交换现象,将声能转换为热能消耗掉。热边界层厚度为 [
目前关于吸声结构的主要理论研究方法包括阻抗匹配法、复频率平面法、耦合模式理论(Coupled mode theory, CMT)和因子提取法。
耦合模式理论是从量子动力学中引申出来的概念,文献[
因子提取法是通过提取系统的损耗因子和泄露因子,当二者相等时则该系统满足临界耦合条件。在共振系统中,系统的品质因子定义为共振频率和3 dB带宽的比值,即。为方便研究共振系统在共振情况下发生共振损耗以及能量泄露这一现象,分别引入和 描述损耗因子和泄露因子,故有。 在共振频率处,损耗因子和泄露因子决定了系统的吸声系数,当时,此时系统的反射系数为零,吸声系数为1,系统满足临界耦合条件,实现完美吸
在阻抗匹配分析法中,阻抗匹配即结构的声阻抗与空气特性阻抗相等,使入射声波完全进入结构中而不产生反射波,可用于揭示声学结构的声学性
(3) |
其中,为空气的特性阻抗。对于反射型的吸声结构,其吸声系数可表示为,将该式进行归一化处理,得到
(4) |
式中:为归一化表面声阻抗率;和分别为声阻率比和声抗率比。
复频率平面分析方法是一种有效的设计宽带吸声结构的经典方

图3 完美吸声体的复频率平面分析示意
Fig. 3 Diagram of complex frequency plane illustration for perfect absorber ( being the reflection coefficients)
在无损耗系统中,反射系数的零点和极点位于实频率轴,对称地分布在复频率平面上,其对应的实频率为系统的共振频率;当系统考虑损耗时,反射系数的零点和极点将沿着虚频率轴的正方向移动。当固有损耗与辐射损耗相等时,零点处于实频率轴上,如
近些年大部分研究学者使用有限元软件COMSOL Multiphysics中的压力声学模块仿真分析吸声结构。在使用压力声学模块时,使用平面波辐射设置入射声压场,如果是透射型吸声结构,则需要设置出射界面为平面波辐射,避免声波遇到硬边界形成二次反射波,影响吸声系数的计算。当所设计的吸声结构的声阻抗远大于空气的特性阻抗时,可将结构边界设置为硬边界,这样将简化计算过程,避免多物理场耦合,很大程度上减少计算时间;当所设计的结构包括管状、腔体、孔洞等结构时,需要考虑热损耗和黏滞效应,这些精细部分的仿真需要用到狭窄区域声学进行计算。
吸声系数的测量体系主要有混响室法、阻抗管法和自由场
目前的吸声结构可以分为传统吸声结构和基于超构材料的吸声结构。传统的吸声材料按吸声机理的不同,可分为多孔吸声材料和共振吸声结构。多孔介质的吸声特性可以通过有效介质理论解
传统材料用于吸收低频声波时,其厚度近似为声波波长的1/
2019年Yoon

图4 参考文献中涉及的声学吸声结构图
Fig. 4 Diagrams of acoustic and sound absorption structures in references
为了获得更好的低频吸声性能,Zhao
在共振吸声结构中,应用最广泛的是微穿孔板吸声结构,因其在较宽的频率范围内能实现高的吸声性能。马大猷先生很早提出了微穿孔板的等效电路理
为提高微穿孔板吸声器的低频吸声性能,很多研究学者在孔形设计方面做了相关研究。2018年Zieliński
在结构耦合方面,2016年Li
在多层微穿孔板结构的设计方面,2017年Qian
为实现可调吸声性能,2015年Duan
综上,传统吸声材料通常需要与声学结构结合设计,在中高频范围的吸声性能较好,而在低频范围的吸声性能较低,且加工困难,因此很难实现深亚波长尺度(或)的低频高效吸声。
文献[

图5 样品B及其实验结
Fig. 5 Sample B and absorption results of experiment
随后,Ma
共振的薄膜吸声器(Hybrid Membrane Resonator, HMR),该结构是在镶嵌有质量片的薄膜共振器的基础上增加空气腔体和背衬结构,如

图6 超表面单元结构的几何示意图和共振特
Fig. 6 Geometry diagram and resonance characteristics of unit cell of metasurface
2019年Liao
为避免薄膜张力对吸声性能的影响,Li
综上,薄膜复合型超表面主要是由张紧的弹性薄膜和贴附在其上的刚性质量片组成。薄膜厚度一般为数百微米,可在深亚波长尺度下实现吸声,然而,薄膜张力影响结构的吸声效果,增加样品制备的难度,使系统的稳定性受到影响;且薄膜类结构具有高品质因子,限制了其在吸声降噪领域中的应用。薄板复合结构虽然避免了张力对实验结果的影响,但是需要较强的外力才能使薄板运动,适用场景受到一定限制。
卷曲空间型超构表面主要是通过折叠空间的方法压缩共振腔以增加声波传播的路径,从而调控声波相位实现吸声。2014年Cai

图7 传统微穿孔板系统与超表面结
Fig. 7 Conventional perforated system and metasurface structure
为了扩宽吸声带宽,2016年Zhang和H

图8 一种三维单端口卷曲型超构材
Fig. 8 Experimental realization of a 3D single-port LAMM with broadband absorption
为进一步降低结构厚度,2018年Huang
为实现声电转换,2019年Jin
为了在结构厚度不增加的情况下降低结构共振频率,Donda
2019年Long

图9 低填充率吸声结构示意与多频带吸声系统示
Fig. 9 Schematic of ultrasparse absorptive system configuration at a low filling ratio
由传输线阻抗转移理论可知,卷曲空间型超构表面需要1/4波长的结构空间才能实现阻抗匹配,因此在低频处时,结构尺度会较大,故需结合多种共振模式降低结构尺度;而一旦内部结构固定,其吸声频率也随之被确定,使该类型的吸声结构在调节吸声带宽方面面临挑战。值得关注的是Sun
亥姆霍兹谐振腔(Helmholtz resonators, HRs)相比于法布里珀罗(Fabry-Pérot,FP)谐振腔具有更小的颈口,可提供较大的声阻,通过较小的体积实现低频吸声,因此,很多研究学者应用亥姆霍兹谐振腔实现低频完美吸声。
2016年Jiménez

图10 “彩虹诱捕器”的吸声结构示意与截面示
Fig. 10 Conceptual view of a rainbow trapping absorber and its section diagram
为降低结构厚度,2019年Huang

图11 样品图与吸声系数结
Fig. 11 Photograph of experimental sample and sound absorption results
分析参考文献中的吸声频率与吸声系数的研究,如

图12 参考文献中的相关参数分析
Fig. 12 Analysis of relevant parameters in references
在实际应用方面,吸声结构已经取得了一定的进展。在2020年的国际消费类电子产品展览会上,日产汽车展出了基于声学超构材料的新型轻质隔声材
在基于声超构材料的结构设计上,利用智能算法进行结构优化,将多声学器件耦合,结合主被动吸声等将是吸声结构向小尺度、高性能、可调带宽发展的重要方向和手
在可调超构材料吸声结构的设计中,引入电场、磁场等可大幅度提高吸声结构的可调能力。声波作为输入信号,将引起电场或磁场变化,其中,电场信号的变化可以通过压电材料实现,如柔性的压电驻极体薄
在结构设计方面,以往的吸声材料设计是基于材料本身的特性设计的,比如吸声棉、穿孔板等;而现在基于超构材料概念的设计思想,可实现从吸声需求入手,通过定制多功能单元和设计人工结构实现对声能的主动调控,提高吸声结构性能;在工作频带设计方面,从单频到宽频,再到向可调带宽发展;在结构尺寸方面,从亚波长尺度到深亚波长尺度发展;在功能扩展方面,增加声能采集与通风功能;在吸声效果方面,从高效吸声到向完美吸声发展;在入射角度方面,实现从垂直入射到全角度入射的吸收。
然而,吸声型超构材料同样也面临着许多挑战。由于超构材料是根据性能指标、应用场景等需求反向设计的,因此需要逆向求解边界条件,并优化结构参数,这将增加计算的复杂程度;其次,由于超构材料是周期排布的人工序构,如果结构受到破坏和损伤,将会影响人工结构的正常功能,如何对超构材料进行有效检测是一个值得思考的问题;除此之外,目前的超构材料结构大多采用3D打印,而结构的精密程度将直接受到打印精度的制约;最后,根据不同的应用领域,超构材料面临不同的工况需求,如在轨道交通和空中客机中,受到振动、冲击、异物撞击等,并且对持久性有较高的要求;在船舶中,需承受台风、海上恶劣环境以及低温潮湿的环境;在室内应用中,受到空间的限制,并在通风、绿色环保等方面有较大要求,故如何确保超构材料在不同工况下的工作效率也是其面临的挑战。
作者贡献声明
潘永东:构思论文框架,指导论文写作与修改。
宋 潮:完成论文初稿的写作和修改。
赵金峰:指导理论部分分析和论文写作、修改。
张晓青:指导论文写作与修改。
参考文献
YANG L, WANG F, MA X. Helicopter interior noise reduction using compounded periodic struts [J]. Journal of Sound and Vibration, 2018, 435(24): 264. [百度学术]
THOMPSON D J, LATORRE IGLESIAS E, LIU X, et al. Recent developments in the prediction and control of aerodynamic noise from high-speed trains [J]. International Journal of Rail Transportation, 2015, 3(3): 119. [百度学术]
LI W, YI G, CHEN Z, et al. Association of occupational noise exposure, bilateral hearing loss with hypertension among Chinese workers [J]. Journal of Hypertension, 2021, 39(4): 643. [百度学术]
TONG H, KANG J. Relationships between noise complaints and socio-economic factors in England [J]. Sustainable Cities and Society, 2021, 65: 102573. [百度学术]
BALAKRISHNAN B, RAJA S, RAJAGOPAL A. Influence of MWCNT fillers on vibroacoustic characteristics of polymer nanocomposite and coated aircraft panels [J]. Applied Acoustics, 2021, 172(15): 107604. [百度学术]
LIU Y, LI Y, SHANG D. The hydrodynamic noise suppression of a scaled submarine model by leading-edge serrations [J]. Journal of Marine Science and Engineering, 2019, 7(3): 68. [百度学术]
WANG J, YANG H, HUA H. Investigations on the vibrational and acoustic characteristics of a submarine-like system by experiments and simulations [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 233(1): 3. [百度学术]
JIANG J G, LI Y. Review of active noise control techniques with emphasis on sound quality enhancement [J]. Applied Acoustics, 2018, 136: 139. [百度学术]
LEE H M, WANG Z, LIM K M, et al. A review of active noise control applications on noise barrier in three-dimensional/open space: Myths and challenges [J]. Fluctuation and Noise Letters, 2019, 18: 1930002. [百度学术]
TANG S K. A review on natural ventilation-enabling facade noise control devices for congested high-rise cities [J]. Applied Sciences-Basel, 2017, 7: 175. [百度学术]
SORENSEN M, POULSEN A H, KROMAN N, et al. Road and railway noise and risk for breast cancer: A nationwide study covering Denmark [J]. Environmental Research, 2021, 195: 110739. [百度学术]
JEONG S J, HONG S Y, SONG J H, et al. Establishment of cavitation inception speed judgment criteria by cavitation noise analysis for underwater vehicles [J]. Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, 2021, 235: 546. [百度学术]
LEE D, JANG Y, PARK J, et al. Underwater stealth metasurfaces composed of split-orifice–conduit hybrid resonators [J]. Journal of Applied Physics, 2021, 129(10): 105103. [百度学术]
HE T, WU Z. Extended disturbance observer with measurement noise reduction for spacecraft attitude stabilization [J]. IEEE Access, 2019, 7: 66137. [百度学术]
KALAUNI K, PAWAR S J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials [J]. Journal of Porous Materials, 2019, 26(6):1795. [百度学术]
MOHAMED A M, YAO K, YOUSRY Y M, et al. Open-cell poly(vinylidene fluoride) foams with polar phase for enhanced airborne sound absorption [J]. Applied Physics Letters, 2018, 113(9): 092903. [百度学术]
RAZEGHI M, ASSOUAR B, QI S, et al. Acoustic metamaterials and metasurfaces: a transformative approach for phononic insulators and energy harvesting [J]. Quantum Sensing and Nano Electronics and Photonics XIV, 2017, 10111:UNSP 101112B. [百度学术]
YANG M, SHENG P. Sound absorption structures: From porous media to acoustic metamaterials [J]. Annual Review of Materials Research, 2017, 47(1): 83. [百度学术]
毛东兴, 洪宗辉. 聚氰胺酯泡沫材料吸声性能及其低频拓展[J]. 噪声与振动控制, 1999 (2): 27. [百度学术]
MAO Dongxing, HONG Zonghui. Sound absorption properties and low frequency expansion of polyurethane foam materials[J], Noise and Vibration Control,1999(2):27. [百度学术]
SAGARTZAZU X, HERVELLA NIETO L, PAGALDAY J M. Review in sound absorbing materials [J]. Archives of Computational Methods in Engineering, 2008, 15(3): 311. [百度学术]
YOON W U, PARK J H, LEE J S, et al. Topology optimization design for total sound absorption in porous media [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112723. [百度学术]
马大猷. 微穿孔吸声体吸收带宽极限[J]. 声学学报, 2003, 28(6): 561. [百度学术]
MA D You. Practical absorption limits of MPP absorbers[J]. Acta Acustica, 2003, 28(6):561. [百度学术]
LI X, CHEN Y, HU G, et al. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation [J]. Smart Materials and Structures, 2018, 27(4): 045015. [百度学术]
CHEN Y Y, HU G K, HUANG G L. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves [J]. Smart Materials and Structures, 2016, 25(10): 105036. [百度学术]
PALMA G, MAO H, BURGHIGNOLI L, et al. Acoustic metamaterials in aeronautics [J]. Applied Sciences, 2018, 8(6): 971. [百度学术]
MA G, YANG M, XIAO S, et al. Acoustic metasurface with hybrid resonances [J]. Nature Materials, 2014, 13(9): 873. [百度学术]
TANG Y, REN S, MENG H, et al. Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound [J]. Scientific Reports, 2017, 7: 43340. [百度学术]
MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound [J]. Nature Communications, 2012, 3: 756. [百度学术]
DONDA K, ZHU Y, FAN S W, et al. Extreme low-frequency ultrathin acoustic absorbing metasurface [J]. Applied Physics Letters, 2019, 115(17): 173506. [百度学术]
ZHU X F, LAU S K, LU Z, et al. Enhancement of sound absorption via vegetation with a metasurface substrate [J]. Applied Acoustics, 2020, 165: 107309. [百度学术]
XIE S, WANG D, FENG Z, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters [J]. Applied Acoustics, 2020, 158: 107046. [百度学术]
LONG H, SHAO C, LIU C, et al. Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface [J]. Applied Physics Letters, 2019, 115(10): 103503. [百度学术]
LIU C R, WU J H, CHEN X, et al. A thin low-frequency broadband metasurface with multi-order sound absorption [J]. Journal of Physics D: Applied Physics, 2019, 52(10): 105302. [百度学术]
李勇. 声学超构表面[J]. 物理, 2017, 46(11): 721. [百度学术]
LI Yong. Acoustic metasurfaces[J]. Physics, 2017,46(11): 721. [百度学术]
JIMÉNEZ N, HUANG W, ROMERO GARCIA V, et al. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption [J]. Applied Physics Letters, 2016, 109(12): 121902. [百度学术]
田源, 葛浩, 卢明辉,等. 声学超构材料及其物理效应的研究进展[J]. 物理学报,2019, 68(19): 7. [百度学术]
TIAN Yuan, GE Hao, LU Minghui,et al. Research advance in acoutsic metamaterials[J]. Acta Physica Sinica, 2019, 68(19): 7. [百度学术]
KONG D Y, XIE D Y, TANG X N, et al. Experimental study of a compact piezoelectric micro-perforated panel absorber with adjustable acoustic property [J]. Journal of the Acoustical Society of America, 2020, 147(3): EL283. [百度学术]
DUAN X H, WANG H Q, LI Z B, et al. Sound absorption of a flexible micro-perforated panel absorber based on PVDF piezoelectric film [J]. Applied Acoustics, 2015, 88: 84. [百度学术]
LIAO Y, ZHOU X, CHEN Y, et al. Adaptive metamaterials for broadband sound absorption at low frequencies [J]. Smart Materials and Structures, 2019, 28(2): 025005. [百度学术]
杜功焕,朱哲民. 声学基础[M]. 2版. 南京:南京大学出版社, 2001. [百度学术]
DU Gonghua, ZHU Zheming. Acoustic fundation[M].
张海澜. 理论声学[M]. 北京:高等教育出版社, 2007. [百度学术]
ZHANG Hailan. Theoretical acoutsics[M]. Beijing: Higher Education Press, 2007. [百度学术]
莫尔斯,英格特. 理论声学[M]. 吕如榆,杨训仁, 译. 北京:科学出版社, 1986. [百度学术]
MORSSE P M, INGARD K U. Theoretical acoustics[M]. Translated by LV Ruyu, YANG Xunren. Beijing: Science Press, 1986. [百度学术]
LONG H, LIU C, SHAO C, et al. Tunable and broadband asymmetric sound absorptions with coupling of acoustic bright and dark modes [J]. Journal of Sound and Vibration, 2020, 479: 115371. [百度学术]
龙厚友. 基于声学超材料的低频声吸收体研究[D].南京: 南京大学, 2019. [百度学术]
LONG Houyou. Research on absorber for low-frequency sound based on acoustic metamaterials[D].Nanjing: Nanjing University, 2019. [百度学术]
HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures [J]. Journal of the Acoustical of Society America, 2019, 145(1): 254. [百度学术]
CAI X, GUO Q, HU G, et al. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators [J]. Applied Physics Letters, 2014, 105(12): 121901. [百度学术]
LI Y, ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness [J]. Applied Physics Letters, 2016, 108(6): 063502. [百度学术]
ZHAO H, WANG Y, YU D, et al. A double porosity material for low frequency sound absorption [J]. Composite Structures, 2020, 239: 111978. [百度学术]
ZHANG C, HU X. Three-dimensional single-port labyrinthine acoustic metamaterial: Perfect absorption with large bandwidth and tunability [J]. Physical Review Applied, 2016, 6(6): 64025. [百度学术]
LI D, CHANG D, LIU B. Enhancing the low frequency sound absorption of a perforated panel by parallel-arranged extended tubes [J]. Applied Acoustics, 2016, 102: 126. [百度学术]
QIAN Y J, ZHANG J, SUN N, et al. Pilot study on wideband sound absorber obtained by adopting a serial-parallel coupling manner [J]. Applied Acoustics, 2017, 124: 48. [百度学术]
CARBAJO J, GHAFFARI Mosanenzadeh S, KIM S, et al. Sound absorption of acoustic resonators with oblique perforations [J]. Applied Physics Letters, 2020, 116(5): 054101. [百度学术]
ROMERO Garcia V, THEOCHARIS G, RICHOUX O, et al. Use of complex frequency plane to design broadband and sub-wavelength absorbers [J]. Journal of the Acoustical Society of America, 2016, 139(6): 3395. [百度学术]
LONG H, CHENG Y, TAO J, et al. Perfect absorption of low-frequency sound waves by critically coupled sublwavelength resonant system [J]. Applied Physics Letters, 2017, 110(2): 023502. [百度学术]
HUANG S B, ZHOU Z L, LI D T, et al. Compact broadband acoustic sink with coherently coupled weak resonances [J]. Science Bulletin, 2020, 65(5): 373. [百度学术]
林汪林. 材料吸声性能的自由场测量方法研究[D]. 合肥: 合肥工业大学, 2017. [百度学术]
LIN Wanglin. Study on free field measurement method of sound absporption properties of material[D]. Hefei: Hefei University of Technology, 2017. [百度学术]
HUANG S, LIU T, ZHOU Z, et al. Extreme sound confinement from quasibound states in the continuum [J]. Physical Review Applied, 2020, 14(2): 021001. [百度学术]
ROMERO Garcia V, JIMENEZ N, GROBY J P, et al. Perfect absorption in mirror-symmetric acoustic metascreens [J]. Physical Review Applied, 2020, 14(5): 054055. [百度学术]
LONG H, CHENG Y, LIU X. Asymmetric absorber with multiband and broadband for low-frequency sound [J]. Applied Physics Letters, 2017, 111(14): 143502. [百度学术]
XIE S, YANG S, YANG C, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202. [百度学术]
MAA D Y. Potential of microperforated panel absorber [J]. Journal of the Acoustical Society of America, 1998, 104(5): 2861. [百度学术]
MAA D Y. Microperforated-panel wideband absorbers [J]. Noise Control Engineering Journal, 1987, 29(3): 77. [百度学术]
ZIELIŃSKI T G, CHEVILLOTTE F, DECKERS E. Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations [J]. Applied Acoustics, 2019, 146: 261. [百度学术]
梅军, 马冠聪, 杨旻,等。暗声学超材料研究[J]. 物理, 2012, 41(7): 425. [百度学术]
MEI Jun, MA Guancong, YANG Min,et al. Dark acoutsic metamaterials[J]. Physics, 2012,41(7): 425. [百度学术]
YANG M, LI Y, MENG C, et al. Sound absorption by subwavelength membrane structures: A geometric perspective [J]. Comptes Rendus Mecanique, 2015, 343(12): 635. [百度学术]
YANG M, MENG C, FU C, et al. Subwavelength total acoustic absorption with degenerate resonators [J]. Applied Physics Letters, 2015, 107(10): 104104. [百度学术]
LI J, ZHOU X, HUANG G, et al. Acoustic metamaterials capable of both sound insulation and energy harvesting [J]. Smart Materials and Structures, 2016, 25(4): 045013. [百度学术]
LI X, XING T, ZHAO J, et al. Broadband low frequency sound absorption using a monostable acoustic metamaterial [J]. Journal of the Acoustical Society of America, 2020, 147(2): EL113. [百度学术]
HUANG S, FANG X, WANG X, et al. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures [J]. Applied Physics Letters, 2018, 113(23): 233501. [百度学术]
STINSON M R, SHAW E A G. Acoustic impedance of small, circular orifices in thin plates [J]. Journal of the Acoustical Society of America, 1985, 77(6): 2039. [百度学术]
JIN M, LIANG B, YANG J, et al. Ultrathin panar metasurface-based acoustic energy harvester with deep subwavelength thickness and mechanical rigidity [J]. Scientific Reports, 2019, 9(1): 11152. [百度学术]
LONG H, LIU C, SHAO C, et al. Subwavelength broadband sound absorber based on a composite metasurface[J]. Scientific Reports, 2020, 10(1): 13823. [百度学术]
SUN M, FANG X, MAO D, et al. Broadband acoustic ventilation barriers [J]. Physical Review Applied, 2020, 13(4): 044028. [百度学术]
DONG R, MAO D, WANG X, et al. Ultrabroadband acoustic ventilation barriers via hybrid-functional metasurfaces [J]. Physical Review Applied, 2021, 15(2): 024044. [百度学术]
JIMÉNEZ N, ROMERO-GARCIA V, PAGNEUX V, et al. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems [J]. Scientific Reports, 2017, 7(1): 13595. [百度学术]
汽车之家,日产汽车展出全新的轻量化超级隔音材料[J]. 橡塑技术与装备,2020, 46(4): 62. [百度学术]
Autiohome. Nissan showed off its new lightweight super soundproof materials[J]. China Rubber/Plastics Technology And Equipment, 2020,46(4):62. [百度学术]
张晴丹. 基于声学超材料的变压器新型降噪技术获突破[EB/OL].[2022-08-30]. https://m.gmw.cn/baijia/2020-10/27/34309749.html. [百度学术]
ZHANG Qingdan. The new noise reduction technology based on acoutic metamaterials has been breakthrough[EB/OL].[2022-08-30]. https://kepu.gmw.cn/2020-10/27/content_34309749.htm. [百度学术]
香港科技大学. 静音科技有限公司公司资料[EB/OL]. [2022-08-30]. https://kt.hkust.edu.hk/index.php/zh-hans/startups/acoustic-metamaterials-company-limited. [百度学术]
The Hong Kong University of Science and Technology. The materials of Acoustic Metamaterials Company Limited. [EB/OL].[2022-08-30]. https://kt.hkust.edu.hk/index.php/zh-hans/startups/acoustic-metamaterials-company-limited. [百度学术]
何宝儀. 港企“超材料”可揀音隔[EB/OL].[2022-08-30] http://paper.wenweipo.com/2017/09/28/HK1709280025.htm. [百度学术]
HE Baoyi. Hong Kong enterprise super material can be picked by sound separation[EB/OL].[2022-08-30]. http://paper.wenweipo.com/2017/09/28/HK1709280025.htm. [百度学术]
王元. 一网打尽军工新材料——超材料[EB/OL].[2021-07-06]. https://www.sohu.com/a/194119005_363747. [百度学术]
WANG Yuan. Catch alll the new military materials-metamaterials[EB/OL].[2021-07-06]. https://www.sohu.com/a/194119005_363747. [百度学术]
JIAO P, ALAVI A H. Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends [J]. International Materials Reviews, 2020, 66 (6): 365. [百度学术]
ZHANG F, PAN Y, ZHAO J, et al. Test, modeling, and analysis of air-coupled ultrasonic transducer based on piezoelectret film [J]. AIP Advances, 2020, 10(6): 065014. [百度学术]
ZHANG Z, LI Q, OUDICH M, et al. Experimental demonstration of enhanced acoustic energy harvesting with a subwavelength metamaterial plate [J]. New Journal of Physics, 2020, 22(12): 123019. [百度学术]