摘要
以某轨道交通全封闭声屏障为研究对象,考虑简化线声源的非相干性,建立2.5维边界元衍射声场模型;通过现场沿线环境噪声测试,验证了该模型的准确性,并与相干源衍射声场预测结果比较;最后预测了在近场高层建筑附近,全封闭声屏障对近轨或远轨车辆噪声的降噪效果。研究结果表明,非相干线声源更符合城市轨道交通噪声源特性;对于轮轨噪声(315~1 000 Hz),全封闭声屏障在高层住宅建筑区域有显著的降噪效果,1/3 倍频程插入损失最大为30.0 dB。对于低频噪声(50~250 Hz),全封闭声屏障会加重高层住宅建筑区域的声压级,使插入损失出现负值。针对高层建筑附近场点,全封闭声屏障的顶端拱形透光板对远轨车辆噪声有更为显著的附加降噪效果,大部分场点附加插入损失均高于5.0 dB。
城市轨道交通的快速发展与建设运营,在加速我国城市化发展进程的同时,还会带来严重的沿线振动噪声污染问题。通常,城市轨道交通列车运行速度约50~70 km·
声屏障作为最重要的降噪措施之一,能够有效降低城市轨道交通噪声。为在有限时间内预测出声屏障的降噪效果,通常建立2维边界元声学分析模型,用于研究声屏障的降噪性
首先定义二维声衍射问题,设声源坐标,场点坐标,将两者距离定义为。在均匀静止的介质中,声场区域D中(除声源)给定场点处的声压满足亥姆霍兹方程,即
(1) |
式中:为波数,,为角频率,为声速。为完成问题的定义,必须给定边界条件,离散二维边界。当边界不含吸声特性,为完全反射边界时,其边界声压法向导数为零,即
(2) |
式中:为法向单位向量。当边界条件包含吸声特性时,其声阻抗边界条件为
(3) |
式中:为表面的声导纳比。
(4) |
式中:若噪声在空气中传播,则为空气特性阻抗;为位于处的边界表面的声阻抗,是关于声波频率的函数。在无穷远处,能量是从声源传播到无穷远位置,满足Sommerfeld条件,即
(5) |
二维实波数和虚波数的声源辐射声场则分别采用二维格林函数和其法向导数定义,单位幅值;全反射地面则采用虚源
计算非相干线声源辐射声场,首先将声源定位于与声屏障长度方向(轴)平行的一条直线上,并假设为一系列紧密排列互不相干的点声源,为场点位置的三维坐标,则该声源的声压幅值可以用互相关函数表示为一个随机过
(6) |
式中:为随机位置的轴坐标;为互相关声压幅值,;为互相关相位差。位于的非相干线声源在自由声场中给定场点处的声压表示为
(7) |
式中:。声能密度的期望则可以表示为
(8) |
式中:为空气密度。采用2.5维边界元法计算包含吸声边界的边界元模型,需要将声导纳比针对目标频率逐一转换,即
(9) |
式中:为目标频率对应波数;为二维解复波数。假设为常数,则非相干线声源经吸声型声屏障顶端衍射的场点声能密度,可通过逆傅里叶变换积
(10) |
式中:为二维场点声压解;为二维场点声压解的复波数。
以某城市轨道交通高架段全封闭声屏障为研究对象,在全封闭声屏障衍射声场模型中,考虑声源的非相干特征,在轮轨相互作用处,定义两条互不相干的非相干线声源,如

图1 某城市轨道交通高架段全封闭声屏障截面图(单位:mm)
Fig.1 Cross section of enclosed barrier in an urban rail transit (unit:mm)
依据2.5维边界元法基本假设,假设桥梁结构和声屏障几何形态沿轨道长度方向不变,仅对截面外表面进行网格划分,如

图2 衍射声场模型
Fig.2 Diffraction sound field models
边界类型 | 边界构成 | 边界条件 |
---|---|---|
开孔泡沫铝吸声板 | 4.0 mm开孔泡沫铝板+50.0 mm空腔+1.5 mm背板 |
Zwikker‒Kosten微观结构模型+传递矩阵 |
PMMA透光隔声板 | 厚度15.0 mm | 全反射边界(纽曼条件) |
PC透光隔声板 | 厚度6.5 mm | 全反射边界(纽曼条件) |
玻璃棉吸声板 |
厚度60.0 mm,内部填充48 kg· |
Delany‒Bazley经验公 |
桥梁结构 | 混凝土 | 全反射边界(纽曼条件) |
车体结构 | 铝型材 | 全反射边界(纽曼条件) |
地面 | 沥青 | 虚源法 |
假设实际隔声板分频隔声量均高于顶端衍射衰减量10 dB以上,不考虑透射声对声屏障插入损失的影响,则声屏障的插入损失定义为声屏障插入前后的声压级差值,即
(11) |
式中:和分别为非相干线声源辐射声场中有、无声屏障声学分析模型在给定场点处的声压级,分别为非相干线声源辐射声场中有、无声屏障声学分析模型在给定场点处的声能密度,由
由于衍射声场模型中包含两条互不相干的非相干线声源,故计算插入损失时,需将两种线声源衍射声场的场点声压级叠加,即
(12) |
式中:为叠加后的总插入损失;和分别为在有、无声屏障断面,位于的第个非相干线声源辐射声波至给定场点处的声压,即2.5维边界元数值解;为非相干点声源数目,这里取2。

图3 现场测试场点位置(单位:mm)
Fig.3 Locations of receivers in in-situ measurement (unit: mm)
对比实测结果与非相干源衍射声场模型的预测结果发现,由

图4 非相干源衍射声场模型、相干源衍射声场模型的预测结果及现场测试结果比较
Fig.4 Comparison of in-situ results and numerical results simulated by the model for incoherent line sources and coherent line sources
由
综上,相干线声源衍射声场模型无法准确有效模拟城市轨道交通声屏障的降噪效果;非相干线声源更符合城市轨道交通噪声源特性,其衍射声场模型可以更加合理有效地预测城市轨道交通声屏障的降噪效果,可推广到一般城市轨道交通声屏障降噪效果的研究中。
城市轨道交通线路多建造在高层住宅建筑附

图5 预测工况的确定
Fig.5 Determination of predictive conditions
针对50~250 Hz低频噪声,由

图6 高层建筑附近场点低频段(50~250 Hz)插入损失(近轨车辆噪声)
Fig.6 Insertion-losses of rail transit noise in low-frequency range (50 to 250 Hz) at receivers near high-rise buildings (near-vehicle noise)
针对315~1 000 Hz主要频段噪声,由

图7 高层建筑轮轨噪声主要频段(315~1 000 Hz)插入损失(近轨车辆噪声)
Fig.7 Insertion-losses of rail transit noise in predominant range (315 to 1 000 Hz) at receivers near high-rise buildings (near-vehicle noise)
由

图8 高层建筑附近场点全频段(50~5 000 Hz)插入损失(近轨车辆噪声)
Fig.8 Insertion-losses of rail transit noise in whole range (50 to 5 000 Hz) at receivers near high-rise
buildings (near-vehicle noise)
针对50~250 Hz低频噪声,由

图9 高层建筑附近场点低频段(50~250 Hz)插入损失(远轨车辆噪声)
Fig.9 Insertion-losses of rail transit noise in low-frequency range (50 to 250 Hz) at receivers near high-rise buildings (far-vehicle noise)
针对315~1 000 Hz主要频段噪声,由

图10 高层建筑轮轨噪声主要频段(315~1 000 Hz)插入损失(远轨车辆噪声)
Fig.10 Insertion-losses of rail transit noise in predominant range (315 to 1 000 Hz) at receivers near high-rise buildings (far-vehicle noise)
由

图11 高层建筑附近场点全频段(50~5 000 Hz)插入损失(远轨车辆噪声)
Fig.11 Insertion-losses of rail transit noise in whole range (50~5 000 Hz) at receivers near high-rise
buildings (far-vehicle noise)
(1)相干线声源衍射声场模型无法准确有效模拟城市轨道交通声屏障的降噪效果;非相干线声源更符合城市轨道交通噪声源特性,其衍射声场模型可以更加合理有效地预测城市轨道交通声屏障的降噪效果,可推广到一般城市轨道交通声屏障降噪效果的研究中。
(2)对于轮轨噪声(315~1 000 Hz),全封闭声屏障在高层住宅建筑区域有显著的降噪效果,最大1/3倍频程插入损失为30.0 dB。对于低频噪声(50~250 Hz),全封闭声屏障会加重高层住宅建筑区域的声压级,使插入损失出现负值。为此,可通过优化设计构型,改善吸隔声板的吸隔声性能,提高其低频降噪能力。
(3)针对高层建筑附近场点,相较于无顶端拱形PC板的双侧直立屏障结构,全封闭声屏障的顶端拱形PC板对近轨车辆噪声的附加降噪效果并不显著,但对远轨车辆噪声有显著的附加降噪效果,大部分场点附加插入损失均高于5.0 dB。由此表明,在声屏障设计中,应综合考虑多种辐射噪声工况的降噪效果。
作者贡献声明
李秋彤:研究概念生成,数据整理与管理,试验数据分析,试验方法设计,软件开发与程序设计,论文初稿撰写,论文审阅与修订。
刘 艳:研究项目管理。
罗雁云:研究课题监管与指导
参考文献
ZHANG X. The directivity of railway noise at different speeds[J]. Journal of Sound and Vibration, 2010. DOI:10.1016/j.jsv.2010.07.003. [百度学术]
THOMPSON D J. Wheel-rail noise generation, part I: introduction and interaction model[J]. Journal of Sound and Vibration, 1993. DOI:10.1006/jsvi.1993.1082. [百度学术]
刘扬, 温志伟, 程明昆. 城市轨道交通噪声预测模式的研究及其应用[J]. 都市快轨交通, 1998, 4:32. [百度学术]
LIU Yang, WEN Zhiwei, CHENG Mingkun. Research and application of prediction model of urban rail transit noise[J]. Urban Rapid Rail Transit, 1998, 4:32. [百度学术]
翟国庆, 张邦俊, 过春燕. 城市高架轨道交通沿线声场分布计算模型[J]. 中国环境科学, 2004, 24(3):320. [百度学术]
ZHAI Guoqing, ZHANG Bangjun, GUO Chunyan. The calculating model of sound field distribution along the urban elevated railway[J]. China Environmental Science, 2004, 24(3):320. [百度学术]
朱彦, 陈光冶, 林常明. 城市高架轨道桥辐射噪声的计算与分析[J]. 噪声与振动控制, 2005, 25(3):37. [百度学术]
ZHU Yan, CHEN Guangye, LIN Changming. Numerical prediction and analysis of radiated noise from viaduct of city[J]. Noise and Vibration Control, 2005, 25(3):37. [百度学术]
刘鹏辉, 杨宜谦. 城市轨道交通微穿孔板式声屏障的设计[C]//噪声与振动控制. 北海:中国声学学会,2009:320–324. [百度学术]
LIU Penghui, YANG Yiqian. Design of sound barrier based on micro-perforated panel absorber for urban transit[C]// Prediction and Control of Transportation Noise . Beihai: The Acoustical Society of China, 2009: 320–324. [百度学术]
王晨. 城市轨道交通高架线路噪声预测简化模型的建立及验证[J]. 城市轨道交通研究, 2019, 8:153 [百度学术]
WANG Chen. Establishment and validation of simplified noise prediction model for urban rail transit elevated line[J]. Urban Mass Transit, 2019, 8: 153. [百度学术]
王奕然, 孙京健. 北京地铁5号线声屏障工程的设计与研究[J]. 铁道标准设计, 2007 (10):26. [百度学术]
WANG Yiran, SUN Jingjian. Design and research of the sound barrier project of Beijing metro line 5[J]. Railway Standard Design, 2007 (10):26. [百度学术]
PETERS S. The prediction of railway noise profiles[J]. Journal of Sound and Vibration, 1974, 32(1): 87. [百度学术]
HOHENWARTER D. Railway noise propagation models[J]. Journal of Sound and Vibration, 1990, 141(1): 17. [百度学术]
何宾. 高速铁路声屏障声学设计、优化及试验研究[D]. 成都: 西南交通大学, 2017. [百度学术]
HE Bin. Acoustic design, optimization and experimental study of high-speed railway sound barrier[D]. Chengdu: Southwest Jiaotong University, 2017. [百度学术]
MURADALI A, FYFE K R. A study of 2D and 3D barrier insertion loss using improved diffraction-based methods[J]. Applied Acoustics, 1998. DOI:10.1016/s0003-682x(97)00040-6. [百度学术]
SEZNEC R. Diffraction of sound around barriers: use of the boundary elements technique[J]. Journal of Sound and Vibration, 1980. DOI:10.1016/0022-460X(80)90689-6. [百度学术]
DUHAMEL D. Efficient calculation of the three-dimensional sound pressure field around a noise barrier[J]. Journal of Sound and Vibration, 1996. DOI:10.1006/jsvi.1996.0548. [百度学术]
KOUSSA F, DEFRANCE J, JEAN P, et al. Acoustic performance of gabions noise barriers: numerical and experimental approaches[J]. Applied Acoustics, 2013. DOI:10.1016/j.apacoust.2012.07.009. [百度学术]
FORSSÉN J, ESTÉVEZ-MAURIZ L, TOREHAMMAR Cet al. A low-height acoustic screen in a setting with an urban road: measured and predicted insertion loss[C]//Proceedings of the INTER-NOISE 2016 - 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future. Hamburg: Institute of Noise Control Engineering, 2016:3858-4854. [百度学术]
HIROE M, KOBAYASHI T, ISHIKAWA S. 2.5-dimensional finite-difference time-domain analysis for propagation of conventional railway noise: application to propagation of sound from surface railway and its verification by scale model experiments[J]. Acoustical Science and Technology, 2017. DOI:10.1250/ast.38.42. [百度学术]
ISHIZUKA T, FUJIWARA K. Performance of noise barriers with various edge shapes and acoustical conditions[J]. Applied Acoustics, 2004. DOI:10.1016/j.apacoust.2003.08.006. [百度学术]
BAULAC M, DEFRANCE J, JEAN P, et al. Efficiency of noise protections in urban areas: predictions and scale model measurements[J]. Acta Acustica United with Acustica, 2006, 92(4):530. [百度学术]
HOTHERSALL D C, CROMBIE D H, CHANDLER-WILDE S N. The performance of t-profile and associated noise barriers[J]. Applied Acoustics, 1991. DOI:10.1016/0003-682X(91)90075-P. [百度学术]
LI Q, DUHAMEL D, YIN H, et al. Comparative analysis of different types of sources on the performance of rigid noise barriers on rigid ground using analytical formulae, a 2.5-D BEM method and scale modelling tests[J]. Acta Acustica United with Acustica, 2019. DOI:10.3813/AAA.919380. [百度学术]
LI Qiutong, DUHAMEL Denis, LUO Yanyun, et al. Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach[J]. Applied Acoustics,2020,158: 107079.1 [百度学术]
李建平, 何金龙. 北京市轨道交通房山线声屏障设计的声学模拟[J]. 铁道标准设计, 2011 (1):1. [百度学术]
LI Jianping, HE Jinlong. Acoustic simulation of sound barrier design of Fangshan line of Beijing rail transit[J]. Railway Standard Design, 2011 (1):1. [百度学术]
沈彬. 某轨道交通声屏障工程深化设计方案[J]. 城市道桥与防洪, 2019(4):214. [百度学术]
SHEN Bin. The deepening design of a rail transit sound barrier project[J]. Urban Roads Bridges & Flood Control, 2019(4):214. [百度学术]
马娜. 上海轨道交通6 号线全封闭声屏障工程设计[J]. 现代城市轨道交通, 2010 (5):38. [百度学术]
MA Na. Design of fully enclosed sound barrier for Shanghai rail transit line 6[J]. Modern Urban Transit, 2010 (5):38. [百度学术]
马娜. 上海轨道交通明珠线二期全封闭声屏障工程设计[J]. 现代城市轨道交通, 2005 (3): 41. [百度学术]
MA Na. Design of fully enclosed sound barrier for Shanghai Mingzhu line[J]. Modern Urban Transit, 2005 (3): 41. [百度学术]
LI K M, WONG H Y. A review of commonly used analytical and empirical formulae for predicting sound diffracted by a thin screen[J]. Applied Acoustics, 2005. DOI:10.1016/j.apacoust.2004.06.004. [百度学术]
张江涛. 泡沫金属吸声性能的优化研究[D]. 北京:华北电力大学, 2013. [百度学术]
ZHANG Jiangtao. Optimization on sound absorption behavior of metal foam[D]. Beijing: North China Electric Power University, 2013. [百度学术]
DELANY M E, BAZLEY E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2):105. [百度学术]
李小珍,聂骏,郭镇,等. 钢弹簧浮置板轨道对箱梁振动声辐射的影响研究[J]. 振动与冲击,2019,38(13):34. [百度学术]
LI Xiaozhen, NIE Jun, GUO Zhen, et al. Effects of steel spring floating slab track on vibration and sound radiation of a box-girder[J]. Journal of Vibration and Shock, 2019,38(13):34. [百度学术]
张小安,翟婉明,石广田,等. 城市轨道交通直壁式声屏障车致振动噪声研究[J]. 兰州交通大学学报,2019,38(1):78. [百度学术]
ZHANG Xiaoan, ZHAI Wanming, SHI Guangtian, et al. Structure noise of straight-wall noise barrier in urban rail transit[J]. Journal of Lanzhou Jiaotong University, 2019,38(1):78. [百度学术]
孙涛. 城市交通噪声对高层建筑的影响及声屏障优化设计研究[J]. 环境科学与管理, 2015 (8):62. [百度学术]
SUN Tao. Study on impact of traffic noise and optimization design of sound barrier for high-rise buildings[J]. Environmental Science and Management, 2015 (8):62. [百度学术]
栗健. 城际铁路单侧高层建筑物声屏障形式设计研究[J]. 铁道标准设计, 2014, 58(7): 153. [百度学术]
LI Jian. Design study on the type of sound barrier for protecting high-rise buildings along single side of intercity railway[J]. Railway Standard Design, 2014, 58(7): 153. [百度学术]