摘要
提出了面向公交信号优先(TSP)的可选相位优化框架,并开发了实时公交信号优先算法。对双环相位结构进行改进,通过加入数个可选公交相位组成多种相位配置场景,可融合相位的重现、调换和插入等多种调整功能,实现绿灯时间、周期和相序同时优化。建立混合整数线性规划模型,设计基础配时偏差线性化表征社会车效益,降低计算复杂度。案例研究显示,提出的算法与主动优先相比,公交的延误和停车次数分别降低33.1%和15.1%,社会车方面分别降低17.7%和12.6%。
公交信号优先是公共交通、交通控制和智能网联等领域的热
近年来,随着网联汽车和移动通信等技术的发展,网联环境所能提供的交通检测数据引起关注,如车载定位、手机定位和网联车通信等系统采集的交通数据,包括车辆实时的位置、速度、加速度和乘客信息等。研究者对网联数据在交通管理和控制方面的应用做了大量探索,包括交通流
网联环境也为公交信号优先的升级带来了重要机遇。比起传统的依赖定点检测的公交优先方法,网联环境下公交能够实时连续地上传位置、速度和乘客数量等信息,有助于提升公交到达时间预测精度以及将人均效益纳入考虑,从而提高公交信号优先效
(1)公交优先对其他车流带来的负效益。给予公交优先权难免会对非公交流向社会车的效益造成损
(2)信号控制仍有优化空间。按照《安徽省城市道路交叉口信号控制设计规范》(DB34/T 2423―2015)提出的控制等级划分,现有的公交信号优先研究对于信号控制调整手段考虑较少,大多停留在Ⅱ―Ⅳ级。如:固定周期和相序,仅调整绿灯时
提出了一种网联环境下基于可选相位优化框架的实时公交信号优先算法。对经典双环相位结构进行改进,提出一种以相序深度优化为特色的框架,通过加入数个可选公交相位组成多种备选的相位配置场景,在优化模型中整合了相位重现、相位调换和相位插入等多种相序调整方式;利用网联环境提供的实时公交到达信息,将公交的所有到达、离开情形同各相位绿灯时间、周期时长和相序等信号控制要素相关联,转化为模型的约束条件,实现以上要素的同时优化;将线性的基础配时偏差作为社会车效益函数以设计优化目标,并结合场景离散化方法,将原问题转化为求解一组混合整数线性规划(MILP)问题,降低了模型复杂度,满足了公交实时优先计算效率要求。最后,在城市交叉口高峰流量场景实验中验证了算法的有效性。
以单个交叉口及其进口道为研究范围,对问题的背景信息作以下设定:
(1)以典型十字交叉口为例,共有8个信号相位,对应8个受信号控制的流向(右转均不受信号控制),即东直、西左、北直、南左、西直、东左、南直和北左,表示为,其中i表示流向或者相位的索引。
(2)东西方向直行各设有一条公交专用道,公交与同流向的社会车在同相位通行。
(3)网联环境能够提供每辆公交实时的预计到达停车线的时刻,表示为,其中n表示公交的索引。
(4)基础配时信息为已知输入,即各个相位的绿灯时间、周期。基础配时是指在不考虑公交优先的情况下,根据当前或历史交通运行信息制定的最优配时方案。根据前文可知,网联环境可提供当前交通状态的估计以及信号控制的优化,其输出结果能够作为基础配时与本算法对接。本研究不对此做详细探讨,相关研究可见文献[
本研究提出方法的概览如

图1 方法概览
Fig.1 Overview of the method
双环相位结构是由美国提出的经典信号控制相位结构框架,已被学术界和工业界广为采用,标准形式如

图2 双环相位结构
Fig.2 Dual-ring phase structure
在标准双环结构的基础上做以下改进:和原为东直和西直相位,同时也服务于同流向公交,为使公交尽快通过交叉口,允许和在同一信号周期内被选择激活最多3次,称这些可能被选择的相位为可选相位,表示为、、和、、,因此环1和环2的默认相位顺序分别为和
,括号表示可选。如何设置这些可选相位是算法需要决策的内容,如

图3 可选相位优化框架
Fig.3 Optional phase optimization framework
用0-1变量表示可选相位是否设置,1表示设置,0表示不设置,则即为算法需要决策的变量之一。为了避免将作为决策变量代入模型导致复杂的MINP问题,本算法采用场景离散化方法,将所有取值情况离散为有限数量场景,并作为已知量代入每个场景,这样就转化为求解多个MILP问题。获得各个场景的最优值和最优解后,再从中选取最优场景,则该场景对应的相位设置情况和绿灯时间即为本次决策输出的最优配时方案。
为了使相位优化更加合理,对取值作出以下规定:与不能同时为零,与同理;与必须同时为0或1。因此,可行的相位设置场景共有18种,如即为其中一种。
该框架的特点在于对双环相位结构的适用性和功能性进行了拓展。在该框架下,周期、绿灯时间和相序可同时优化,并且在相序方面实现了深度优化,用数学模型整合了多种常见的基于规则式的相位调整手段,如相位重复、相位调换和相位插入等,使相位调整方式更加灵活而合理,如

图4 框架内包含的多种相位调整方式
Fig.4 Multiple types of phase adjustment in the framework
算法优化模型的目标函数为
(1) |
式中:是公交车效益函数;是社会车效益函数;是权重调节系数,取值在0到1之间,代表管理者对于2种竞争关系的效益在优化目标中的权衡。取值越大,公交优先效果越明显,反之,社会车效益维护越明显。实践中可根据仿真实验和历史经验确定取值。和的计算式如下所示:
(2) |
(3) |
式中:是第n辆公交的延误;是当前决策所考虑的全部公交索引的集合;是的绿灯时间;是周期时长;是上一周期的绿灯时间;是上一个周期时长;是求中元素个数;是基础配时中的周期时长;是基础配时中的绿灯时间。
用公交总延误表征,公交总延误越小,公交效益越高。为了简化公交延误的计算,不考虑加减速以及排队形成和消散部分的延误。
为了应对使用延误表征社会车效益较为复杂的问题,算法设计了基础配时偏差作为,如
对
(4) |
式中:和是引入的用于绝对值项线性化的辅助变量。因此,以基础配时偏差作为既能有效表征社会车效益,达到调节公交和社会车效益的目的,又避免了非线性问题带来的复杂性,提高计算性能。
优化模型的决策变量如
变量 | 含义 | 单位 | 变量类型 |
---|---|---|---|
的绿灯时间 | s | 整数 | |
周期时长 | s | 整数 | |
第n辆公交的延误 | s | 连续 | |
第n辆公交是否在通过,1代表是 | 0-1整数 | ||
用于计算的辅助变量 | 连续 | ||
注意与的区别:是原始双环结构中的绿灯时间,而是可选相位优化框架下的绿灯时间,后者是实际上的决策变量。两者之间的对应关系如下所示:
(5) |
(6) |
(7) |
(1)绿灯时间上下限为
(8) |
(9) |
式中:和分别是绿灯时间的上下限。要保证行人和非机动车的最小通过时间。
(2)周期上下限为
(10) |
(11) |
(12) |
(13) |
式中:和分别为周期的上下限;为周期寻优范围。
(3)双环周期约束为
(14) |
(15) |
式中:是相位间隔,包含黄灯和全红时间。
(4)双环屏障约束为
(16) |
(17) |
(18) |
(5)若当前场景不设置,则公交不可能在通过。
(19) |
(6)若公交来自东直流向,则不可能在、和通过;若公交来自西直流向,则不可能在、和通过。
(20) |
式中:和分别表示来自东直和西直的公交集合。
(7)一辆公交只能在决策周期的某一个相位通过或者无法在该周期任何相位通过。
(21) |
(8)若公交未在决策周期任何相位内通过,则认为其在周期终点通过。
(22) |
式中:为决策周期开始时刻;为一个预设的足够大的常量,如100倍。若公交未在决策周期的任何相位通过,则该约束发挥作用,即最小能取。由于本研究的算法应用于公交专用道场景且公交流量不会过高,因此在计算公交延误时不考虑排队长度以及加减速的影响。
(9)若公交在某相位通过,其到达时间不晚于该相位绿灯终点,其通过时间不早于该相位绿灯起点。
(23) |
(24) |
(25) |
式中:为绿灯起点时刻;为绿灯决策变量的列向量,;为相位间隔的列向量,;为在决策周期内出现顺序的行向量,。若和都存在(),领先于,且两者所处双环结构中的同一环,则,否则,。例如,在环1()和环2(
)所表示的相序中,表示和在决策周期内顺序的行向量分别为和
。由于决策中每个场景的相位设置情况预先已确定,是已知量。
(10)引入辅助变量用于目标函数中绝对值项线性化的约束,如下所示:
(26) |
(27) |
(28) |
(29) |
以深圳市皇岗路-红荔路交叉口为例,验证本研究提出的实时公交信号优先算法(以下简称“实时优先”)的有效性。案例交叉口的东西进口(红荔路)各设有一条直行公交专用道,于早晚高峰期间使用,其布局如

图5 案例交叉口布局
Fig.5 Layout of the studied intersection
东进口车辆流量 | 西进口车辆流量 | 南进口车辆流量 | 北进口车辆流量 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
左转 | 直行 | 右转 | 公交 | 左转 | 直行 | 右转 | 公交 | 左转 | 直行 | 右转 | 左转 | 直行 | 右转 |
520 | 500 | 200 | 115 | 300 | 500 | 560 | 125 | 150 | 1 840 | 590 | 310 | 2 430 | 375 |
使用一款行业内常用的交通仿真软件Vissim按照
主动公交优先算法(以下简称“主动优先”)已在国内外的大量实践中取得一定效果,并且红灯早断、绿灯延长和相位插入等主动优先手段与本算法具有一定关联性,因此本算法还将与其进行比较。主动优先算法采用《公交优先信号控制规范》(DB34/T 3536―2019)中推荐的典型案例,该案例代表了国内目前主流的公交信号优先水平,即公交专用道停车线的上游100 m处和下游5 m处分别设置检入和检出检测器,可以实施公交相位的红灯早断、绿灯延长和相位插入等主动优先手段。主动优先算法在仿真中的实现方式与实时优先类似。
实时优先和主动优先所需的基础配时相同,均来自于信号控制优化软件Synchro的优化结果。Synchro软件以交叉口各个流向的平均小时流量为输入,计算得到以平均延误和停车次数构成的综合指标最优的定时控制方案,因此称这种方法为“定时最优”,作为参与对比的第3种方法。实验所需参数取值如
参数符号 | 参数含义 | 单位 | 取值 |
---|---|---|---|
目标函数权重调节系数 | 0.6 | ||
周期寻优范围 | s | 25 | |
最大周期时长 | s | 180 | |
最小周期时长 | s | 80 | |
最大绿灯时间 | s | 60 | |
最小绿灯时间(直行) | s | 15 | |
最小绿灯时间(左转) | s | 10 | |
相位间隔 | s | 5 |
研究时长为4 h,在实时优先算法控制下共产生124个信号周期。

图6 实时优先算法输出的相序统计
Fig.6 Count of phase sequences from real-time TSP algorithm

图7 实时优先算法输出的各周期信号配时结果
Fig.7 Cycle-by-cycle signal timings from real-time TSP algorithm
从
从

图8 平均延误
Fig.8 Average delay

图9 平均停车次数
Fig.9 Average stops
指标 | 方法 | 东直 | 西左 | 北直 | 南左 | 西直 | 东左 | 南直 | 北左 | 社会车平均 | 公交 |
---|---|---|---|---|---|---|---|---|---|---|---|
平均延误/s | 定时最优 | 50.2 | 49.2 | 36.7 | 69.6 | 54.0 | 52.5 | 39.0 | 43.6 | 42.6 | 51.8 |
主动优先 | 33.9 | 62.6 | 58.0 | 101.7 | 34.1 | 108.7 | 48.2 | 53.3 | 56.5 | 30.8 | |
实时优先 | 39.0 | 52.5 | 47.1 | 76.5 | 41.3 | 61.7 | 41.6 | 46.6 | 46.5 | 20.6 | |
改善比例/% | 实时优先相比定时最优 | -9.2 | 60.2 | ||||||||
实时优先相比主动优先 | 17.7 | 33.1 | |||||||||
停车次数 | 定时最优 | 1.00 | 0.95 | 0.98 | 1.24 | 1.04 | 1.01 | 0.89 | 0.90 | 0.96 | 1.05 |
主动优先 | 0.91 | 1.03 | 1.52 | 1.62 | 0.93 | 2.19 | 0.95 | 0.95 | 1.27 | 0.86 | |
实时优先 | 0.98 | 1.00 | 1.28 | 1.40 | 1.01 | 1.21 | 0.93 | 0.92 | 1.11 | 0.73 | |
改善比例/% | 实时优先相比定时最优 | -15.6 | 30.5 | ||||||||
实时优先相比主动优先 | 12.6 | 15.1 |
从定时最优和2种公交优先方法的对比可看出,实现公交优先必然损害社会车效益,因为以公交优先为目的、以公交动态为依据的信号控制调整必然破坏对于社会车的最优性。然而,实时优先仅以社会车延误增加9.2%的代价获取公交延误降低60.2%的收益,明显优于定时最优。此外,从各个相位的延误和停车次数变化分布来看,实时优先比主动优先更加稳定。例如,主动优先引起了东左相位社会车延误和停车次数的剧烈增加,两者分别为108.7 s和2.19,比定时最优增加了107%和117%,而实时优先东左相位社会车的延误和停车次数为61.7 s和1.21,仅比定时最优增加了17.5%和19.8%。
值得探讨的是,实时优先也可能带来一定的负面影响,如增大损失时间以及造成驾驶者的困惑等。在周期时长变化不大的情况下,相位数量的增加必然造成损失时间的增加,如
综上,实时优先在可选相位优化框架下对于绿灯时间、周期以及相序进行充分优化,同时实时优先算法将基础配时偏差作为社会车效益的表征是有效的,能够平衡公交和社会车效益,在实现公交优先的同时保证社会车效益不受过多损害。
(1)建立的可选相位优化框架拓展了双环相位结构的适用性和功能性,在每个周期中按一定顺序加入数个可选公交相位以组成多种备选的相位配置场景,可灵活整合相位重现、相位调换和相位插入等多种相序调整方式。
(2)将可选相位优化框架应用于城市典型的具有双向公交专用道的十字交叉口,利用网联环境提供的实时公交到达信息作为输入,开发了实时公交信号优先算法,通过滚动优化,实现了下一周期各相位绿灯时间、周期和相序的同时优化。
(3)将线性的基础配时偏差作为社会车效益函数以设计优化目标,并结合场景离散化方法,将原问题转化为一组混合整数线性规划问题,降低了复杂度。平均每次优化耗时0.216 s,满足公交实时优先计算效率要求。
(4)对所提出的算法在城市交叉口高峰流量场景下进行实验。结果表明,该算法对周期时长、绿灯时间和相序进行了合理优化,既具备对公交到达时变特征的实时响应能力,又保证基础配时不遭受破坏。研究时段内共出现13种相序,所有可选相位均有使用记录,与定时最优方案相比平均周期时长改变4.6%,各相位平均绿灯时间最大改变12.8%,平均偏差较小。
(5)所提出的算法与目前主流的公交主动优先方法相比在公交和社会车效益方面均占优,公交的延误和停车次数降低33.1%和15.1%,社会车方面分别降低17.7%和12.6%。此外,算法引起的延误和停车次数变化在社会车各个流向上的分布也更加稳定。
本研究聚焦于具有双向公交优先需求的典型十字交叉口,未来将进一步探讨网联技术在公交优先的应用潜力以及所提出的框架和算法的拓展性。例如,适用于多向公交优先需求和多种交叉口类型,实现公交运行速度、驻站时间和信号控制的协同优化。
作者贡献声明
殷炬元:方法设计,算法开发,仿真实验,文稿撰写与修改。
黎淘宁:方法设计,数据处理,文稿修改。
孙 剑:核心立意,主体设计,文稿修改。
参考文献
马万经, 杨晓光. 公交信号优先控制策略研究综述[J]. 城市交通, 2010, 8(6): 70. [百度学术]
MA Wanjing, YANG Xiaoguang. A review of prioritizing signal strategies for bus services[J]. Urban Transport of China, 2010, 8(6): 70. [百度学术]
董玉璞, 李克平, 倪颖. 基于相位优先度规则的单点公交优先控制策略[J]. 同济大学学报(自然科学版), 2014, 42(8): 1181. [百度学术]
DONG Yupu, LI Keping, NI Ying. Isolated transit signal priority control strategy based on phase priority degree rule[J]. Journal of Tongji University (Natural Science), 2014, 42(8): 1181. [百度学术]
WANG Shan, NI Ying, LIU Zupeng, et al. A comparison of transit signal priority strategies with multi-step detection at isolated intersections[C] // IEEE, 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 1684-1689. [百度学术]
ZENG Xiaosi, ZHANG Yunlong, BALKE K N, et al. A real-time transit signal priority control model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1657. [百度学术]
ZHENG J F, LIU H X. Estimating traffic volumes for signalized intersections using connected vehicle data[J]. Transportation Research, Part C: Emerging Technologies, 2017, 79: 347. [百度学术]
SEO T, KUSAKABE T, ASAKURA Y. Estimation of flow and density using probe vehicles with spacing measurement equipment[J]. Transportation Research, Part C: Emerging Technologies, 2015, 53(6): 134. [百度学术]
SUN D, ZHANG K S, SHEN S W. Analyzing spatiotemporal traffic line source emissions based on massive didi online car-hailing service data[J]. Transportation Research, Part D: Transport and Environment, 2018, 62: 699. [百度学术]
YIN Juyuan, SUN Jian, TANG Keshuang. A Kalman filter-based queue length estimation method with low-penetration mobile sensor data at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(45): 2534. [百度学术]
YIN Juyuan, CHEN Peng, TANG Keshuang, et al. Queue intensity adaptive signal control for isolated intersection based on vehicle trajectory data[J]. Journal of Advanced Transportation, 2021, 2021: 1. [百度学术]
FENG Yiheng, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research, Part C: Emerging Technologies, 2015, 55: 460. [百度学术]
HU Jia, PARK B B, PARKAN A E. Transit signal priority with connected vehicle technology[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2418(1): 20. [百度学术]
HU Jia, PARK B B, LEE Y. Coordinated transit signal priority supporting transit progression under connected vehicle technology[J]. Transportation Research, Part C: Emerging Technologies, 2015, 55: 393. [百度学术]
HU Jia, PARK B B, LEE Y. Transit signal priority accommodating conflicting requests under connected vehicles technology[J]. Transportation Research, Part C: Emerging Technologies, 2016, 69: 173. [百度学术]
WU Zhizhou, TAN Guishan, SHEN Jie, et al. A schedule-based strategy of transit signal priority and speed guidance in connected vehicle environment[C] // IEEE, 19th International Conference on Intelligent Transportation Systems. New York: IEEE, 2016: 2416-2423. [百度学术]
WANG Yinsong, MA Wanjing, YIN Wei, et al. Implementation and testing of cooperative bus priority system in connected vehicle environment: case study in Taicang City, China[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2424(1): 48. [百度学术]
LIU Jiahui, LIN Peiqun, RAN Bin. A reservation-based coordinated transit signal priority method for bus rapid transit system with connected vehicle technologies[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 13(4): 17. [百度学术]
王永胜, 谭国真, 刘明剑, 等. 车联网环境下的公交自适应优先方法[J]. 计算机应用, 2016, 36(8): 2181. [百度学术]
WANG Yongsheng, TAN Guozhen, LIU Mingjian, et al. Adaptive priority method of public bus under Internet of vehicles[J]. Journal of Computer Applications, 2016, 36(8): 2181. [百度学术]
LI Meng, YIN Yafeng, ZHANG Weibin, et al. Modeling and implementation of adaptive transit signal priority on actuated control systems[J]. Computer-Aided Civil and Infrastructure Engineering, 2011, 26(4): 270. [百度学术]
CHRISTOFA E, PAPAMICHAIL I, SKABARDONIS A. Person-based traffic responsive signal control optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1278. [百度学术]
HAN Xu, LI Pengfei, SIKDER R, et al. Development and evaluation of adaptive transit signal priority control with updated transit delay model[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2438(1): 45. [百度学术]
MA W J, LIU Y, YANG X. A dynamic programming approach for optimal signal priority control upon multiple high-frequency bus requests[J]. Journal of Intelligent Transportation Systems, 2013, 17(4): 282. [百度学术]
QING He, HEAD K L, DING Jun. Multi-modal traffic signal control with priority, signal actuation and coordination[J]. Transportation Research, Part C: Emerging Technologies, 2014, 46: 65. [百度学术]
TRUONG L T, CURRIE G, WALLACE M, et al. Coordinated transit signal priority model considering stochastic bus arrival time[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(4): 1. [百度学术]