摘要
针对深海水合物地层钻井过程中的井壁稳定问题,考虑水合物分解、热传导、力场-渗流场全耦合作用,建立了过压和欠压钻井下渗流、温度、力场随时间和空间变化的非稳态解析模型。解析结果与相同条件下的数值结果吻合良好,且与力场-渗流半耦合解析结果进行了对比。基于解析模型对井壁稳定的关键参数如钻井液压力、水合物分解引起的地层弹性模量劣化程度等进行了分析,结果表明:①与半耦合分析结果相比,考虑体变对渗流的影响后,过(欠)压钻井时孔压减小(增大)、应力增大(减小),增量径向位移减小;②最危险位置在井壁处,过高或过低的钻井液压力均会导致井壁失稳,水合物分解引起的地层劣化将降低最安全钻井液压力;③水合物分解引起的地层刚度降低极易诱发井壁失稳。在通常条件下,过压钻井时分解域弹性模量降低50%即可导致井壁失稳。
天然气水合物是在自然界中由甲烷为主的烃类气体与水在高压、低温条件下形成的似冰状固态结晶物
井壁失稳是水合物钻井和开采面临的主要问题之
作为数值方法的验证和补充以及理论分析手段之一,解析模型对实际工程进行合理等效和简化(保留核心影响因素),通过严格数学推导获得满足全部数学方程的封闭或解析形式的解答,能直接显示核心参数的函数形式影响关系和力学控制机理,实现多场耦合条件下井壁力学状态的快速和稳定计算。有关井壁稳定的多场耦合解析模型多针对常规油气开采,根据流固耦合程度可分为半耦合和全耦合模型。半耦合模型通过有效应力原理考虑孔隙压力对力场的单向影响,并结合不同的屈服准则进行稳定性的判
通过对实际问题合理简化,建立考虑水合物分解、热传导、力场-渗流场全耦合作用的非稳态解析模型,并分析水合物地层钻井井壁稳定性,为实际工程提供参考。
考虑水合物分解及非稳态渗流-力场全耦合作用下的深海水合物钻井过程中的井壁稳定问题。通常含水合物地层位于上下不透水层之

图1 渗流场、温度场与力场耦合关系
Fig.1 Seepage and temperature versus mechanical fields in analytical model

图2 含水合物地层井壁分析的几何模型及其边界条件
Fig.2 Geometry and boundary conditions for wellbore stability in methane hydrate-bearing sediments
由于在钻井过程中水合物分解较少,因此忽略分解产生的水气及热量变化的影
(1) |
式中:P为孔压;t为时间;εv为地层体积应变;k为地层渗透率;μ为流体黏滞系数;α为Biot系数,α=1–K/Ks,K为含水合物地层体积模量,K=E/[3(1–2ν)],Ks为地层固体颗粒体积模量;M为Biot模量,,ν、νu分别为含水合物地层的排水、不排水泊松比,,Ku为地层不排水体积模量, [
温度场的热量传递方式仅考虑热传导,热对流通过增大分解域内的热传导系数近似考
(2) |
式中:Ti为含水合物地层温度;ai为含水合物地层的热扩散系数,ai =λi/(ρichi);λi、ρi和chi分别为含水合物地层的热传导系数、密度和比热容。
考虑渗流影响的力场平衡方程为
(3) |
式中:σr 、σθ分别为径向、环向正应力(有效应力)。几何方程为
(4) |
式中:εr 、εθ分别为径向、环向正应变;ur为径向位移。由轴对称条件,在研究平面上其余应力和应变为零。本模型首先按弹性阶段进行计算,然后根据强度准则和应力分布进行破坏分析。本构方程为
, | (5) |
由平面应变条件得,z向正应力表达式
(6) |
可见,渗流控制方程与力场控制方程是耦合的。为进行解耦,将
(7) |
式中:C、D为待定系数,可由边界和连续条件确定。对平面应变问题,体积应变可写为。由
(8) |
则为一维Biot固结系
(9) |
令,
(10) |
式中:ηi为常量,与流体、固体变形特性相关。偏微分方程
(11) |
式中:Ai、Bi为待定系数, Ei(x)为关于x的指数积分函数,。由
边界条件
(12) |
连续性条件
(13) |
初始条件
且r1= r0 | (14) |
将定解条件式(
(15) |
比较
边界条件
(16) |
连续性条件
(17) |
初始条件
和 r1= r0 | (18) |
采用与渗流场相同的求解过程,获得温度的非稳态解答为
(19) |
水合物的分解取决于压力和温度。通过海水中纯水合物的相平衡试验数
(20) |
式中:P为压力,MPa;T为温度,℃。在水合物分解半径r= r1处温度和压力满足水合物相平衡方程。将
水合物分解将导致含水合物地层强度和刚度的显著降低,从而影响井壁安全。求解力场的控制方程(3)—(5),可得有效应力及位移通解为
(21) |
(22) |
(23) |
式中:Ci、Di为待定系数。可见,孔隙压力通过应力中第1、3项的形式影响应力场,第2项是纯力场问题的通解。定解条件为
,,, | (24) |
将
实际工程中更关心钻井活动引起的增量位移,增量模型(
,,, | (25) |
将

图3 增量位移计算的几何模型及其边界条件
Fig.3 Geometry and boundary conditions in incremental model of formation for incremental displacement calculation
为了验证模型数学推导的正确性,将本文得到的解析解与数值解进行对比。数值模型本构、各类参数、考虑因素、边界条件等均和解析模型一致。因温度场和渗流场具有相同形式的控制方程和边界条件,仅对渗流场和力场进行验证。数值模型采用商用软件COMSOL中的偏微分方程模拟渗流场,固体力学模块模拟力场,数值模型最大半径设置为100 m(为1 000r0)以模拟无穷远边界,其余参数在数值与解析模型中均相同。参数依据实际工程参数范围进行选取,井壁半径r0=0.1 m,时间t=24 h,Biot系数α1=α2=0.7,初始地应力σ∞=15.6 MPa,初始孔压P∞=15 MPa,过压、欠压钻井液压力Pwfo=17 MPa、Pwfu=13 MPa,地层弹性模量E1=40 MPa、E2=120 MPa,地层渗透率k1=3×1

图4 解析结果与数值结果、部分耦合结果的对比
Fig.4 Comparison of analytical, numerical, and partial coupling results
(26) |
式中:ϕ为含水合物地层孔隙度;Ct为地层压缩系数,Ct=1/K。
为验证本模型在复杂问题中的适用性,将解析解与复杂数值模

图5 解析模型的孔压与复杂数值模
Fig.5 Comparison of pore pressure between analytical solution and numerical solution under complex condition
为定量分析水合物地层钻井过程中各因素对井壁稳定的影响,分析三场的时间和空间分布,并对钻井液压力、水合物分解引起的弹性模量劣化程度等参数对井壁稳定的影响进行讨论,并根据强度准则和应力分布进行稳定性分析。井壁失稳即为地层应力状态超过强度准则规定的应力状态。强度准则可以根据实际地层状态选用。由于深海含水合物土体刚度较大,地层性质接近岩
(27) |
式中:σ1为最大主应力;σ3为最小主应力;σc为岩石单轴抗压强度;m、s为岩石经验参数,可分别由, 确定, 其中GSI为地质强度指数,表征岩石完整程度,m0与组成岩石的矿物成分有关,d为干扰系数。令为HB等效应力,则当f<0时,井壁处于安全状态;当f > 0时,井壁处于失稳状态。借鉴我国南海的水合物地层特点和试采数据,模型参数取值为:σc1=2 MPa、σc2=5 MP
分别针对过压钻井(Pwfo=17 MPa)和欠压钻井(Pwfu=13 MPa)工况进行研究,图

图6 不同时间下渗流、温度、力场和分解半径沿极径分布规律
Fig.6 Pore pressure, temperature, mechanical field, and the dissociated radius versus polar radius at different times
径向应力空间上呈现先减小后增大最后趋于初始值的规律,其最小值发生在分解锋面附近(r=r1),说明分解造成的地层软化减小了2个域的相互作用。过压钻井时,径向应力最大值在井壁处;而欠压钻井时,最大值发生在邻近井壁的未分解域内。过压钻井时,径向应力随时间减小;欠压钻井时,径向应力随时间增大,井壁附近的径向和环向应力基本不随时间变化。由于分解域弹性模量降低,环向应力在分解锋面两端表现出不同的变化趋势,并在分解锋面处有跳跃增大点(如
钻井液压力对保持井壁稳定非常重要。图

图7 不同钻井液压力下应力、位移和等效应力沿极径分布规律
Fig.7 Stress, displacement, and HB equivalent stress versus polar radius at different drilling fluid pressures
水合物分解会导致地层刚度和强度的显著降

图8 不同地层弹性模量比下应力、位移和等效应力沿极径分布规律
Fig.8 Stress, displacement, and HB equivalent stress versus polar radius at different elastic modulus ratios
针对深海水合物钻井在过压和欠压条件下的井壁稳定性,建立虑水合物分解、热传导、力场-渗流场全耦合作用下解析模型,并分析关键参数对井壁稳定性的影响,得出以下结论:
(1)与半耦合分析结果相比,考虑体变对渗流的影响后,过(欠)压钻井时孔压降低(升高)、应力升高(降低)、增量径向位移减小,如增量位移最多可减小41.13%。
(2)井壁失稳风险随时间升高,最危险位置在井壁处。井壁及地层的位移随钻井液压力与地层初始孔压的压差(| Pwf–P∞|)增大而显著增加,过高或过低的钻井液压力均会导致井壁失稳。最安全钻井液压力与地层性质有关,水合物分解引起的地层劣化将降低最安全钻井液压力。
(3)水合物分解引起的地层弹性模量劣化会显著增大地层变形,在过压钻井时极易诱发井壁失稳,弹性模量降低50%即可导致井壁失稳。
推导的解析解答可以反映力场对渗流场的部分影响和深海水合物钻井时井壁稳定的力学机理。由于数学解析理论的限制,仅推导了弹性解答,且未考虑渗透率、孔隙率的变化,后续研究将考虑地层塑性变形及渗透率或孔隙率变化对渗流的影响。
作者贡献声明
黄佳佳:公式推导、参数分析、论文撰写。
蒋明镜:项目负责人,论文修改。
王华宁:项目负责人,研究思路指导、论文修改。
参考文献
WAITE W F, SANTAMARINA J C, CORTES D D, et al. Physical properties of hydrate-bearing sediments[J]. Reviews of Geophysics, 2009, 47(4):465. [百度学术]
祝有海,庞守吉,王平康, 等.中国天然气水合物资源潜力及试开采进展[J].沉积与特提斯地质,2021,41(4):524. [百度学术]
ZHU Youhai, PANG Shouji, WANG Pingkang, et al. A review of the resource potentials and test productions of natural gas hydrates in China[J]. Sedimentary Geology and Tethyan Geology,2021,41(4):524. [百度学术]
付强, 周守为, 李清平. 天然气水合物资源勘探与试采技术研究现状与发展战略[J]. 中国工程科学, 2015(9):123. [百度学术]
FU Qiang, ZHOU Shouwei, LI Qingping. Natural gas hydrate exploration and production technology research status and development strategy[J]. Engineering, 2015(9):123. [百度学术]
COLLETT T, BAHK J J, BAKER R, et al. Methane hydrates in nature-current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2015, 60(2):319. [百度学术]
SUN X, LI Y H, LIU Y, et al. The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization[J]. Energy, 2019 (185): 837. [百度学术]
LI L J, LI X S, WANG L, et al. Investigating the interaction effects between reservoir deformation and hydrate dissociation in hydrate-bearing sediment by depressurization method[J]. Energies, 2021,14(3): 548. [百度学术]
袁益龙, 许天福, 辛欣, 等.海洋天然气水合物降压开采地层井壁力学稳定性分析[J].力学学报,2020,52(2):544. [百度学术]
YUAN Yilong, XU Tianfu, XIN Xin, et al. Mechanical stability analysis of strata and wellbore associated with gas production from oceanic hydrate-bearing sediments by depressurization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):544. [百度学术]
ZEYNALI M E. Mechanical and physico-chemical aspects of wellbore stability during drilling operations[J]. Journal of Petroleum Science and Engineering, 2012: 82(83): 120. [百度学术]
SUN J X, NING F L, LEI H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study[J]. Journal of Petroleum Science & Engineering, 2018, 17:345. [百度学术]
谭琳,刘芳.水平井降压法和热激法水合物开采对海底边坡稳定性的影响[J].力学学报,2020,52(2):567. [百度学术]
TAN Lin, LIU Fang. Submarine slope stability during depressurization and thermal stimulation hydrate production with horizontal wells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):567. [百度学术]
LI Y, CHENG Y, YAN C, et al. Mechanical study on the wellbore stability of horizontal wells in natural gas hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103359. [百度学术]
刘乐乐,鲁晓兵,张旭辉. 天然气水合物分解引起多孔介质变形流固耦合研究[J].天然气地球科学,2013,24(5):1079. [百度学术]
LIU Lele, LU Xiaobing, ZHANG Xuhui. Numerical study on porous media’s deformation due to natural gas hydrate dissociation considering fluid-solid coupling[J]. Natural Gas Geoscience, 2013,24(5):1079. [百度学术]
丁立钦,王志乔,吕建国,等.基于围岩本体Mogi-Coulomb强度准则的层理性岩层斜井井壁稳定模型[J].岩石力学与工程学报, 2017, 36(3): 622. [百度学术]
DING Liqin, WANG Zhiqiao, LV Jianguo, et al. A model for inclined borehole stability in bedding rocks based on Mogi-Coulomb criterion of rock matrix[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 622. [百度学术]
WU B S, ZHANG X, JEFFREY R G, et al. Analytical solutions for an extended overcore stress measurement method based on a thermo-poro-elastic analysis[J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 89:75. [百度学术]
WU B S, GAMAGE R P, ZHANG X, et al. An analytical thermo-poro-elasticity model for the mechanical responses of a wellbore and core during overcoring[J]. International Journal of Rock Mechanics & Mining Sciences, 2017, 98:141. [百度学术]
WANG H N, CHEN X P, JIANG M J, et al. Analytical investigation of wellbore stability during drilling in marine methane hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2019, 68:102885. [百度学术]
王华宁,郭振宇,高翔,等.含水合物地层井壁力学状态的弹塑性解析分析[J].同济大学学报(自然科学版),2020,48(12):1696. [百度学术]
WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing sediments[J]. Journal of Tongji University (Natural Science), 2020,48(12):1696. [百度学术]
CHENG W, LU C H, NING F L, et al. A coupled thermal-hydraulic-mechanical model for the kinetic dissociation of methane hydrate in a depressurizing well[J]. Journal of Petroleum Science and Engineering, 2021, 207(11):109021. [百度学术]
JUNG J W, JANG J, SANTAMARINA J C, et al. Gas production from hydrate-bearing sediments: The role of fine particles[J]. Energy & Fuels, 2012, 26(1):480. [百度学术]
ADNOYB S,BELAYNEH M. Elasto-plastic fracturing model for wellbore stability using non-penetrating fluids[J]. Journal of Petroleum Science & Engineering, 2004, 45(3): 179. [百度学术]
ROOSTAIE M, LEONENKO Y. Analytical modeling of methane hydrate dissociation under thermal stimulation[J]. Journal of Petroleum Science and Engineering, 2019, 184:106505. [百度学术]
HONG H, POOLADI-DARVISH M, BISHNOI P R. Analytical modelling of gas production from hydrates in porous media[J]. Journal of Canadian Petroleum Technology, 2003, 42(11):45. [百度学术]
GOEL N, SHAH S, WIGGINS M. Analytical modeling of gas recovery from in situ hydrates dissociation[J]. Journal of Petroleum Science & Engineering, 2001, 29(2):115. [百度学术]
COUSSY O. A general theory of thermoporoelastoplasticity for saturated porous materials[J]. Transport in Porous Media, 1989, 4(3):281. [百度学术]
WU B S, XI Z, JEFFREY R G, et al. A semi-analytic solution of a wellbore in a non-isothermal low-permeability porous medium under non-hydrostatic stresses[J]. International Journal of Solids and Structures, 2012, 49(13):1472. [百度学术]
GASSMANN F. Elastic waves through a peaking of spheres[J]. Geophysics, 1951, 16:673 [百度学术]
ZHAO L, CAO C, YAO Q, et al. Gassmann consistency for different inclusion-based effective medium theories: Implications for elastic interactions and poroelasticity[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018328. [百度学术]
WILLIAMS D E. Thermal properties of soils[J]. Physics Teacher, 1991, 39(1): 37. [百度学术]
ZHANG C G, ZHAO J H, ZHANG Q H, et al. A new closed-form solution for circular openings modeled by the Unified Strength Theory and radius-dependent Young’s modulus[J]. Computers and Geotechnics, 2012, 42, 118. [百度学术]
BIOT M A. General theory of three dimensional consolidation[J] Journal of Applied Physics, 1941, 12 :155. [百度学术]
李晓平. 地下油气渗流力学[M]. 2版. 北京:石油工业出版社, 2015. [百度学术]
LI Xiaoping. Seepage mechanics for underground oil and gas[M].
DICKENS G R, QUINBY-HUNT M S. Methane hydrate stability in seawater[J]. Geophysical Research Letter, 1994, 21(19): 2115. [百度学术]
刘晓强, 郭天魁, 曲占庆, 等. 水合物藏水力压裂储层改造可行性评价模型及应用[J]. 中南大学学报(自然科学版), 2022, 53(3): 1058. [百度学术]
LIU Xiaoqiang, GUO Tiankui, QU Zhanqing, et al. Fracability evaluation model and application of hydraulic fracturing in natural gas hydrate reservoir[J]. Journal of Central South University(Science and Technology), 2022, 53(3): 1058. [百度学术]
陈鹏. 基于Hoek-Brown准则的边坡等效Mohr-Coulomb参数估算[D].西安: 长安大学,2021. [百度学术]
CHEN Peng. Estimation of equivalent Mohr-Coulomb parameters of slope based on Hoek-Brown criterion[D]. Xi’an: Chang’an University, 2021. [百度学术]
孙金声,程远方,秦绪文,等.南海天然气水合物钻采机理与调控研究进展[J].中国科学基金,2021(6):940. [百度学术]
SUN Jinsheng, CHENG Yuanfang, QIN Xuwen, et al. Research progress on natural gas hydrate drilling & production in the south china sea[J]. Bulletin of National Natural Science Foundation of China, 2021(6):940. [百度学术]
LI Y, CHENG Y, YAN C, et al. Mechanical study on the wellbore stability of horizontal wells in natural gas hydrate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2020, 79:103359. [百度学术]
张旭辉,鲁晓兵,王淑云,等.四氢呋喃水合物沉积物静动力学性质试验研究[J].岩土力学,2011,32(S1):303. [百度学术]
ZHANG Xuhui, LU Xiaobing, WANG Shuyun, et al. Experimental study of static and dynamic properties of tetrahydrofuran hydrate-bearing sediments[J]. Rock and Soil Mechanics, 2011,32(S1):303. [百度学术]
LIU W G, CHEN Y F, ZHU Y M, et al. Effects of different mining methods on the strength behavior of gas hydrate-bearing sediments[J]. Energy Procedia, 2014, 61, 547. [百度学术]