摘要
研发了一种可以连续、稳定的打印最大粒径10 mm的粗骨料混凝土3D打印系统。对比测试了3D打印粗骨料混凝土与浇筑混凝土的力学性能,发现3D打印粗骨料混凝土抗压强度呈现细微的各向异性特征(差异在5%以内),而抗折强度呈现显著的各向异性特征(差异在20%~25%之间);与浇筑混凝土相比其抗压强度降低10%~15%,垂直于打印方向的抗折强度(Fy与Fz)降低10%~15%,平行于打印方向的抗折强度(Fx)降低30%~35%。通过微观结构分析发现,3D打印粗骨料混凝土的总孔隙率与浇筑混凝土总孔隙率相近,但3D打印粗骨料混凝土存在明显的层间薄弱区,其灰度值比平均灰度值低25%,说明在层间薄弱区的孔隙分布更加密集,3D打印混凝土中体积在10 m
关键词
建筑3D打印是一种基于计算机数字模型的增材成型技术,主要通过逐层打印建筑材料的方式来快速成型,具有效率高、成本低、环保等建造优
Han
自主研发的粗骨料混凝土3D打印机为立柱式机械结构,其结构和应用如

图 1 立柱式粗骨料混凝土3D打印机结构与应用
Fig. 1 Structure and application of column style 3D printer for coarse aggregate concrete
该立柱式粗骨料混凝土3D打印机通过伺服反馈系统实现了粗骨料混凝土连续、稳定的挤出以及打印轴精确的控制。如

图 2 3D打印粗骨料混凝土伺服反馈系统
Fig. 2 3D printing servo feedback system for concrete with coarse aggregates
该伺服反馈系统实现了闭环控制,保证了混凝土3D打印的连续性,准确性和安全性。
粗骨料混凝土连续、均匀地挤出是3D打印研究难点,因此打印头的设计尤其重要。传统的定子转子螺杆动力系统难以实现5 mm粒径以上的粗骨料混凝土打
本文设计的打印头采用活塞式挤出动力系统,打印喷嘴的尺寸为100 mm,可以挤出10 mm粒径以下的粗骨料混凝土,动力系统最大扭矩为50 N∙m,进料速度为0~1.5 L·mi

图3 打印头结构构造
Fig. 3 Structure details of print head

图 4 粗骨料混凝土扭矩与坍落度的关系
Fig. 4 Relationship between torque and slump of coarse aggregate concrete
众所周知,混凝土的储存、运输和供料过程会改变其工作性能,给3D打印挤出过程带来不确定的变化。因此,在打印头内对即将挤出的混凝土进行测试和调节可以使料仓内的混凝土满足可挤出性和可建造性。
3D打印领域中大多数材料为热熔材料,遇冷直接凝固,不仅成型容易而且连续打印难度低,无需考虑下层强度。而建筑3D打印系统在打印过程中,如果使用粗骨料混凝土作为油墨材料,需要较强的早期强度来满足其可建造性,同时需要较高的流动性来满足其可挤出性。因此,本研究使用了聚羧酸超塑化剂(SP)、纤维素醚(HPMC)、铝酸盐速凝剂(Ac)作为外加剂;OPC42.5水泥(Cem)和粉煤 灰(FA)作为胶凝材料;0~5 mm粒径的天然河沙,以及5~10 mm粒径的天然砾石作为骨料。同时,配比中加入了适量的硅粉(SF)来提高混凝土的流动性、可建造性以及力学性能。3D打印粗骨料混凝土油墨配合比如
材料 | Cem | 水 | FA | 砂 | 粗骨料 | SF | SP | HPMC | Ac |
---|---|---|---|---|---|---|---|---|---|
配合比/(kg· | 444 | 210 | 96.6 | 870 | 588 | 41.4 | 0.20~0.53 | 1.11 | 0.4~0.8 |
已有研究表明,层层堆叠的3D打印工艺会造成打印构件力学性能的各向异

图 5 3D打印粗骨料混凝土不同加载方向抗压与抗折测试(单位:mm)
Fig. 5 Compressive and flexural tests of 3D printed coarse aggregate concrete in different loading directions(unit:mm)

图 6 抗压及抗折强度测试
Fig. 6 Tests of compressive and flexural strengths
单层打印高度为40 mm,打印试件的层数为11层(440 mm),长度1 m,宽度100 mm,并在温度为(20±2)℃,相对湿度为(95±5)%环境下养护28 d。抗压试件尺寸为100 mm×100 mm×100 mm的立方体,抗折试件为100 mm×100 mm×400 mm的棱柱体,均为在硬化后的打印试件上切割而成,如
为深入分析3D打印工艺对粗骨料混凝土力学性能的影响机理,使用NIKON XTH 225/320 LC型设备对试件进行CT扫描,测量微观孔隙结构的孔隙尺寸以及空间分布,CT扫描设备及图像如

图 7 CT扫描设备及图像
Fig. 7 CT scanning device and image
用于CT扫描的混凝土浇筑试件和3D打印试件为100 mm×100 mm×100 mm的立方体,扫描的3D打印试件与2.2节中的抗压强度试件尺寸和获取方式相同,本试验单层打印高度为40 mm,100 mm高度可以包含2个打印层间。
本文通过3D微观图像计算总的孔隙率,孔隙按照体积大小不同被分为3类:①小孔隙(1
浇筑试件和3D打印混凝土试件的抗压和抗折强度如图

图 8 浇筑试件和3D打印试件的抗压与抗折强度
Fig. 8 Compressive and flexural strengths of both cast and 3D printed specimens
从
试件 | 总孔隙率/% | 不同尺寸孔隙占总孔隙比例/% | ||
---|---|---|---|---|
1 | 1 | 0.1~10 m | >10 m | |
浇筑 | 1.594 | 42.1 | 49.0 | 8.9 |
3D打印 | 1.445 | 42.5 | 38.0 | 19.5 |

图 9 浇筑试件与3D打印试件的微观结构
Fig. 9 Microstructure of both cast and 3D printed specimens

图 10 浇筑试件与3D打印试件灰度分布
Fig. 10 Gray distribution of both cast and 3D printed specimens
目前,建筑3D打印研究中仍以水泥砂浆为主要“油墨”,
工艺 | 3D打印材料 | 水泥用量/(kg· | 砂用量/(kg· | 粗骨料用量/(kg· |
---|---|---|---|---|
Le | 砂浆 | 579.0 | 1 241.0 | 0 |
Wang | 砂浆 | 722.6 | 772.6 | 0 |
Zhang | 砂浆 | 882.0 | 900.0 | 0 |
Kazemian | 砂浆 | 540.0 | 1 357.0 | 0 |
Kruger | 砂浆 | 579.0 | 1 167.0 | 0 |
本文 | 粗骨料混凝土 | 444.0 | 870.0 | 588 |
本文提出了一种可以打印10 mm以下粒径粗骨料混凝土的3D打印系统,闭环控制系统可以实时检测打印头中螺旋叶片的扭矩,通过扭矩‒坍落度的关系和外加剂定量注入系统,可以将新拌粗骨料混凝土调节到打印的优选区间,同时满足可挤出性和可建造性。伺服反馈机制实时检测电机负荷、温度等信息并储存打印位置,提高了系统的安全性、准确性以及容错性,从而实现连续、稳定的打印。通过对3D打印粗骨料混凝土力学性能测试和微观结构试验分析,得出以下主要结论:
(1)10 mm以下粒径粗骨料混凝土3D打印试件的抗压强度呈现细微的各向异性特征,平行于打印方向的抗压强度(Pp)比垂直于打印方向的抗压强度(Pv)高4.8%。其抗折强度呈现显著的各向异性,平行于打印方向的抗折强度(Fx)比垂直于打印方向的抗折强度(Fy与Fz)分别低25%和21%。同一配比下,3D打印粗骨料混凝土试件的抗压强度比模具浇筑试件抗压强度低10%~15%,Fy与Fz比浇筑试件抗折强度低10%~15%,Fz比浇筑试件抗折强度低30%~35%。
(2)与浇筑试件相比,3D打印粗骨料混凝土的总孔隙率相近,但是大孔隙(>10 m
(3)3D打印粗骨料混凝土的水泥用量比之前研究中3D打印砂浆的水泥用量减少17.8%~49.6%。
作者贡献声明
汲广超:具体工作的开展和论文撰写。
肖建庄:论文的选题、指导、修改。
参考文献
TAY Y W, PANDA B, PAUL S, et al. 3D printing trends in building and construction industry [J]. Virtual and Physical Prototyping, 2017, 12 (3): 262. [百度学术]
HOU S, DUAN Z, XIAO J, et al. A review of 3D printed concrete [J]. Construction and Building Materials, 2020, 12: 121745. [百度学术]
肖绪文, 马荣全, 田伟. 3D打印建筑研发现状及发展战略 [J]. 施工技术, 2017, 46(1): 5. [百度学术]
XIAO Xuwen, MA Rongquan, TIAN Wei. State and development strategy for 3D printing construction Technology [J]. Construction Technology, 2017, 46(1): 5. [百度学术]
NERELLA V, NATHER M, IQBAL A, et al. Inline quantification of extrudability of cementitious materials for digital construction [J]. Cement and Concrete Composites, 2019, 95: 260. [百度学术]
ROUSSEL N. Rheological requirements for printable concretes [J]. Cement and Concrete Research, 2018, 112: 76. [百度学术]
段珍华, 刘一村, 肖建庄, 等. 混凝土建筑3D打印技术工程应用分析 [J]. 施工技术 , 2021, 50(18): 15. [百度学术]
DUAN Zhenhua, LIU Yicun, XIAO Jianzhuang, et al. Practical application analysis of 3D concrete printing technology [J]. Construction Technology, 2021, 50(18): 15. [百度学术]
KHOSHNEVIS B. Automated construction by contour crafting—related robotics and information technologies [J]. Automation in Construction, 2004, 13: 5. [百度学术]
JAYATHILAKAGE R, RAJEEV P, SANJAYAN J, Extrusion rheometer for 3D printing concrete [J]. Cement and Concrete Composites, 2021, 121: 104075. [百度学术]
YUAN Q, LI Z, ZHOU D, et al. A feasible method for measuring the buildability of fresh 3D printing mortar [J]. Construction and Building Materials, 2019, 227: 116600. [百度学术]
XIAO J, ZOU S, YU Y, et al. 3D recycled mortar printing: system development, process design, material properties and on-site printing [J]. Journal of Building Engineering, 2020, 32: 101779. [百度学术]
PAUL S, TAY Y, PANDA B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction [J]. Archives of Civil and Mechanical Engineering, 2018, 18 : 311. [百度学术]
LE T, AUSTIN S, LIM S, et al. Mix design and fresh properties for high-performance [J]. Materials and Structures, 2012, 45: 1221. [百度学术]
MALAEB Z, HACHEM H, TOURBAH A, et al. 3D concrete printing: machine and mix design [J]. International Journal of Civil Engineering and Technology, 2015, 6(6): 14. [百度学术]
PANDA B, PAUL S, TAN M, Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material [J]. Materials Letters, 2017, 209: 146. [百度学术]
XIAO J, ZOU S, YU Y, et al. 3D recycled mortar printing: system development, process design, material properties and on-site printing [J]. Journal of Building Engineering, 2020, 32: 101779. [百度学术]
HE Y, ZHANG Y, ZHANG C, et al. Energy-saving potential of 3D printed concrete building with integrated living wall [J]. Energy & Buildings, 2020, 222: 110110. [百度学术]
BAI G, WANG L, MA G, et al. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates [J]. Cement and Concrete Composites, 2021, 120: 104037. [百度学术]
HAN Y, YANG Z, DING T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete [J]. Journal of Cleaner Production, 2021, 278: 123884. [百度学术]
DING T, XIAO J, QIN F, et al. Mechanical behavior of 3D printed mortar with recycled sand at early ages [J]. Construction and Building Materials, 2020, 248: 118654. [百度学术]
MECHTCHERINE V, NERELLA V, WILL F, et al. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing [J]. Automation in Construction, 2019, 107: 102933. [百度学术]
RAHUL A, SANTHANAM M. Evaluating the printability of concretes containing lightweight coarse aggregates [J]. Cement & Concrete Composites, 2020, 109: 103570. [百度学术]
刘化威,刘超,白国良,等. 基于孔结构缺陷的3D 打印粗骨料混凝土力学性能试验研究[J]. 土木工程学报,2022, 55(12):54. [百度学术]
LIU Huawei, LIU Chao, BAI Guoliang, et al.Experimental study on mechanical properties of 3D printed coarse aggregate concrete based on the pore structure defects[J]. China Civil Engineering Journal,2022,55(12):54. [百度学术]
LIU H, LIU C, BAI G, et al. Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate [J]. Additive Manufacturing, 2022, 55: 102843. [百度学术]
WU Y, LIU C, LIU H, et al. Study on the rheology and buildability of 3D printed concrete with recycled coarse aggregates [J]. Journal of Building Engineering, 2021, 42: 103030. [百度学术]
BOS F, BOSCO E, SALET T. Ductility of 3D printed concrete reinforced with short straight steel fibers [J]. Virtual and Physical Prototyping, 2019, 14: 160. [百度学术]
NEMATOLLAHI B, XIA M, SANJAYAN J, et al. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer [J]. Materials Science Forum, 2018, 939: 155. [百度学术]
PANDA B, PAUL S, HUI L, et al. Additive manufacturing of geopolymer for sustainable built environment [J]. Journal of Cleaner Production, 2017, 167: 281. [百度学术]
PERROT A, RANGEARD D, COURTEILLE E. 3D printing of earth-based materials: processing aspects [J]. Construction and Building Materials, 2018, 172: 670. [百度学术]
XIAO J, JI G, ZHANG Y, et al. Large-scale 3D printing concrete technology: current status and future opportunities [J]. Cement and Concrete Composites, 2021, 122: 104115. [百度学术]
ZHANG Y, ZHANG Y, SHE W, et al. Rheological and harden properties of the high-thixotropy 3D printing concrete [J]. Construction and Building Materials, 2019, 201: 278. [百度学术]
DING T, XIAO J, ZOU S, et al. Hardened properties of layered 3D printed concrete with recycled sand [J]. Cement and Concrete Composites, 2020, 113: 103724. [百度学术]
DING T, XIAO J, ZOU S, et al. Anisotropic behavior in bending of 3D printed concrete reinforced with fibers [J]. Composite Structures, 2020, 254: 112808. [百度学术]
WANG L, JIANG H, LI Z, et al. Mechanical behaviors of 3D printed lightweight concrete structure with hollow section [J]. Archives of Civil and Mechanical Engineering, 2020, 20:16. [百度学术]
ZHANG Y, ZHANG Y, LIU G, et al. Fresh properties of a novel 3D printing concrete ink [J]. Construction and Building Materials, 2018, 174: 263. [百度学术]
KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture [J]. Construction and Building Materials, 2017, 145: 639. [百度学术]
KRUGER J, ZERANKA S, ZIJL G. 3D concrete printing: a lower bound analytical model for buildability performance quantification [J]. Automation in Construction, 2019, 106: 102904. [百度学术]