摘要
为研究玄武岩纤维增强水泥砂浆(Basalt Fiber Reinforced Cement Mortar,BFRCM)在不同配合比下的流动度和力学性能,通过改变水灰比、长短纤维混掺比例及添加减水剂来改变配合比,设计了2种纤维长径比、7种玄武岩纤维体积分数、3种水灰比、3种减水剂质量分数共制备了14组BFRCM试样。研究了不同配合比下BFRCM的流动度、抗压强度及抗折强度,通过峰值荷载后BFRCM的荷载-位移曲线的归一化处理量化分析了试样断裂后BFRCM的断裂韧性。结果表明,BFRCM的流动度随着玄武岩纤维体积分数的增加、水灰比的降低、减水剂的减少以及短纤维占比的增加而降低。水灰比的增加对BFRCM的抗压强度影响较小,且会降低其抗折强度。减水剂的应用对BFRCM的抗压、抗折强度存在一定的负面影响。长短玄武岩纤维的混掺能够通过其协同效应有效提升BFRCM的抗压和抗折强度,然而过多的短纤维占比会减弱玄武岩纤维对BFRCM的增强效果。增加玄武岩纤维体积分数、 提高水灰比均能在一定范围内提升BFRCM峰值荷载后的断裂韧性。然而,长短纤维混掺中短纤维占比的增加和减水剂的应用则对BFRCM峰值荷载后的断裂韧性产生负面影响。
玄武岩纤维是由火成岩在高温熔融后利用铂锗合金拉丝工艺制成的连续纤
然而,针对玄武岩纤维增强水泥砂浆(Basalt Fiber Reinforced Cement Mortar,BFRCM)流动度和力学性能的研究主要集中在不同玄武岩纤维体积分数,少数研究者还探索了混惨比例一定情况下不同长径比玄武岩纤维对砂浆性能的影响,对于综合考虑水灰比、减水剂用量和长短纤维的混掺比例等对BFRCM的流动度及力学性能的影响研究较少,因此,本文通过考虑水灰比、长短纤维混掺比例及减水剂用量等来改变配合比,研究不同配合比下BFRCM的流动度、抗压强度及抗折强度以及断裂后BFRCM的断裂韧性。
试验采用2种长径比的玄武岩纤维,如

图1 玄武岩纤维
Fig. 1 Basalt fiber
长度/mm | 直径/μm | 密度/(g·c | 弹性模量/GPa | 抗拉强度/MPa | 断裂伸长率/% |
---|---|---|---|---|---|
3 | 13 | 2.65 | 85 | 4 200 | 3.1 |
16 | 13 | 2.65 | 85 | 4 200 | 3.1 |
试验制作了14组砂浆试件,每组的水泥为600g,砂为1 200g,其他材料配合比见
编号 | 水/g | 减水剂质量分数/% | 玄武岩纤维体积分数/% | |
---|---|---|---|---|
长 | 短 | |||
B0W0.45P0S0 | 270 | 0 | 0 | 0 |
B0.1W0.45P0S0 | 270 | 0 | 0.10 | 0 |
B0.2W0.45P0S0 | 270 | 0 | 0.20 | 0 |
B0.5W0.45P0S0 | 270 | 0 | 0.50 | 0 |
B0.75W0.45P0S0 | 270 | 0 | 0.75 | 0 |
B1W0.45P0S0 | 270 | 0 | 1.00 | 0 |
B1.25W0.45P0S0 | 270 | 0 | 1.25 | 0 |
B1W0.45P0.1S0 | 270 | 0.10 | 1.00 | 0 |
B1W0.45P0.15S0 | 270 | 0.15 | 1.00 | 0 |
B1W0.45P0.1S100 | 270 | 0.10 | 0 | 1.00 |
B1W0.45P0.1S20 | 270 | 0.10 | 0.80 | 0.20 |
B1W0.45P0.1S50 | 270 | 0.10 | 0.50 | 0.50 |
B1W0.4P0.1S0 | 240 | 0.10 | 1.00 | 0 |
B1W0.5P0.1S0 | 300 | 0.10 | 1.00 | 0 |

图2 纤维体积分数对玄武岩纤维增强水泥砂浆流动度的影响
Fig. 2 Effect of fiber contents on fluidity of BFRCM

图3 减水剂和水灰比对玄武岩纤维增强水泥砂浆流动度的影响
Fig. 3 Effect of water reducer content and water to cement ratio on fluidity of BFRCM
将不同长短的玄武岩纤维进行混掺会降低砂浆的流动性,不同混掺比例下砂浆的流动度如

图4 纤维混掺对玄武岩纤维增强水泥砂浆流动度的影响
Fig. 4 Effect of hybrid long and short fibers on fluidity of BFRCM

图5 纤维体积分数对玄武岩纤维增强水泥砂浆抗压强度的影响
Fig. 5 Effect of fiber contents on compressive strength of BFRCM

图6 水灰比对玄武岩纤维增强水泥砂浆抗压强度的影响
Fig. 6 Effect of water to cement ratio on compressive strength of BFRCM

图7 减水剂对玄武岩纤维增强水泥砂浆抗压强度的影响
Fig. 7 Effect of water reducer contents on compressive strength of BFRCM

图8 纤维混掺对玄武岩纤维增强水泥砂浆抗压强度的影响
Fig. 8 Effect of hybrid long and short fibers on compressive strength of BFRCM
BFRCM抗折强度随纤维体积分数的变化如

图9 纤维体积分数对玄武岩纤维增强水泥砂浆抗折强度的影响
Fig. 9 Effect of fiber contents on bending strength of BFRCM

图10 水灰比对玄武岩纤维增强水泥砂浆抗折强度的影响
Fig. 10 Effect of water to cement ratio on bending strength of BFRCM
BFRCM抗折强度随减水剂用量的变化如

图11 减水剂对玄武岩纤维增强水泥砂浆抗折强度的影响
Fig. 11 Effect of water reducer content on bending strength of BFRCM

图12 纤维混掺对玄武岩纤维增强水泥砂浆抗折强度的影响
Fig. 12 Effect of hybrid long and short fibers on compressive of BFRCM
玄武岩纤维对水泥砂浆抗折性能的提升主要是通过其桥接作用减缓荷载作用下裂缝的扩展从而提高砂浆的韧性。为进一步分析玄武岩纤维对水泥砂浆抗折性能的影响,采用Fantilli

图13 断裂韧性参数计算示意
Fig. 13 Parameters for fracture toughness index calculation

图14 纤维体积分数对玄武岩纤维增强水泥砂浆断裂韧性参数的影响
Fig. 14 Effect of fiber contents on fracture toughness index of BFRCM

图15 水灰比对玄武岩纤维增强水泥砂浆断裂韧性参数的影响
Fig. 15 Effect of water to cement ratio on fracture toughness index of BFRCM

图16 减水剂对玄武岩纤维增强水泥砂浆断裂韧性参数的影响
Fig. 16 Effect of water reducer contents on fracture toughness index of BFRCM

图17 纤维混掺对玄武岩纤维增强水泥砂浆断裂韧性参数的影响
Fig. 17 Effect of hybrid long and short fibers on fracture toughness index of BFRCM
(1)BFRCM的流动度随着纤维体积分数的增加而降低。通过增大水灰比以及添加减水剂均会使BFRCM的流动度增加。而长短纤维的混掺对BFRCM的流动度有负面影响,短纤维比例的增加会导致试样流动度下降。
(2)增大水灰比对BFRCM的抗压强度影响不显著,同时会降低其抗折强度,而添加减水剂对BFRCM的抗压和抗折强度影响较小,过高的减水剂质量分数对玄武岩纤维的增强效果产生负面影响。长短纤维混掺能够在水泥基体产生宏观破坏前显著地提升其抗压、抗折性能,长短纤维的协同作用对BFRCM有明显的增强作用,然而过多的短纤维占比会减弱玄武岩纤维对BFRCM的增强效果。
(3)试样开裂后的断裂韧性受水灰比的影响较大,水灰比越高,断裂韧性越强。添加减水剂对试样的增韧效果不明显。当长短纤维混掺时,短纤维对宏观裂缝的桥接作用有限,因此短纤维比例越高,断裂韧性越低。
作者贡献声明
占玉林:提出研究主题与论文思路。
林金根:实验开展与数据整理分析,论文撰写与修订。
斯睿哲:实验监管与指导,结果验证与核实,提出论文框架与论文修改。
高文银:技术咨询。
程学强:文字校对,稿件修订。
参考文献
CORY H, HATEM M, ADEL E, et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials, 2015, 96(15): 37. [百度学术]
ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pretension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites, 2019, 96: 33. [百度学术]
ARSLAN M E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement[J]. Construction & Building Materials, 2016, 114(1): 383. [百度学术]
SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B: Engineering, 2005, 36(6): 504. [百度学术]
吴晓斌. 玄武岩纤维在土木工程中的应用研究进展[J]. 硅酸盐通报, 2020, 39(4): 1043. [百度学术]
WU Xiaobin. Application research progress of basalt fiber in civil engineering [J]. Silicate Bulletin, 2020, 39(4): 1043. [百度学术]
KOGAN F M, NIKITINA O V. Solubility of chrysotile asbestosand basalt fibers in relation to their fibrogenic and carcino-genic action[J]. Environ Health Perspect, 1994, 102 (5): 205. [百度学术]
MCONNELL E E, KANSTRUP O, MUSSELMAN R. Chronic inhalation study of size separated rock and slag wool insulation fibers in fischer 344/N[J]. Inhalat Toxicol, 1994, 6(6): 571. [百度学术]
成涛华, 李玉香. 玄武岩纤维增强混凝土力学性能研究[J]. 混凝土与水泥制品, 2017(1): 53. [百度学术]
CHENG Taohua, LI Yuxiang. Study on mechanical properties of basalt fiber reinforced concrete [J]. Concrete and Cement Products, 2017(1): 53. [百度学术]
SADRMOMTAZI A, TAHMOURESI B, SARADAR A. Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC)[J]. Construction & Building Materials, 2018,162: 321. [百度学术]
李建. 短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J]. 硅酸盐通报, 2017(2): 727. [百度学术]
LI Jian. Effects of chopped basalt fiber on mechanical properties and microstructure of slag fly ash concrete [J]. Silicate Bulletin, 2017(2): 727. [百度学术]
赵碧华, 刘永胜, 何松华, 等. 玄武岩纤维参数对水泥砂浆流动性的影响[J]. 武汉理工大学学报, 2009,31(7): 5. [百度学术]
ZHAO Bihua, LIU Yongsheng, HE Songhua, et al. The effects of basalt fiber parameter on the fluidity of cement mortar [J]. Journal of Wuhan University of Technology, 2009, 31(7): 5. [百度学术]
RAMAKRISHNAN V, TOLMARE N S, BRIK V B. Performance evaluation of 3-D basalt fiber reinforced concrete & basalt rod reinforced concrete[EB/OL]. [2023-02-01]. https://onlinepubs.trb.org/onlinepubs/archive/studies/idea/finalreports/highway/NCHRP045_Final_Report.pdf. [百度学术]
SUN X, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials, 2019, 202: 58. [百度学术]
WANG D L, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials, 2019, 197: 464. [百度学术]
RAMESH B, ESWARI S. Mechanical behavior of basalt fiber reinforced concrete: an experimental study[J]. Materials Today: Proceedings, 2021, 43: 2317. [百度学术]
唐明, 杨欢. 玄武岩纤维增强水泥基复合材料研究[J].混凝土, 2010(5): 76. [百度学术]
TANG Ming, YANG Huan. Research on basalt fiber reinforced cementitious composites[J]. Concrete, 2010(5): 76. [百度学术]
何顺爱, 郑召, 李玉香. 玄武岩纤维在水泥砂浆结构优化中的尺度效应[J]. 混凝土, 2016, 6: 110. [百度学术]
HE Shunai, ZHENG Zhao, LI Yuxiang. The scale effect of basalt fiber in the optimization of cement mortar structure [J]. Concrete, 2016, 6: 110. [百度学术]
WU Z M, SHI C J, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials, 2016, 103: 8. [百度学术]
ZHANG K, PAN L S, LI J C, et al. How does adsorption behavior of polycarboxylate superplasticizer effect rheology and flowability of cement paste with polypropylene fiber [J]. Cement and Concrete Composites, 2019, 95: 228. [百度学术]
QIU J P, GUO Z B, YANG L, et al. Effects of packing density and water film thickness on the fluidity behavior of cemented paste backfill[J]. Powder Technology, 2020, 359: 27. [百度学术]
RALEGAONKAR R, GAVALI H, ASWATHA P, et al. Application of chopped basalt fibers in reinforced mortar: A review[J]. Construction and Building Materials, 2018, 164: 589. [百度学术]
李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419. [百度学术]
LI Fuhai, GAO Hao, TANG Huiqi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete [J]. Journal of Railway Science and Engineering, 2022, 19(2): 419. [百度学术]
KHAN M, CAO M L. Effect of hybrid basalt fiber length and content on properties of cementitious composites[J]. Magazine of Concrete Research, 2021, 73(10): 487. [百度学术]
牛恒茂,武文红,邢永明,等. 水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J]. 复合材料学报, 2015, 32(4): 1067. [百度学术]
NIU Hengmao, WU Wenhong, XING Yongming, et al. Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J]. Journal of Composite Materials, 2015, 32(4): 1067. [百度学术]
FANTILLI A P, SICARDI S, DOTTI F. The use of wool as fiber-reinforcement in cement-based mortar[J]. Construction and Building Materials, 2016, 139: 562. [百度学术]