摘要
为了深入揭示桩柱式桥墩-桩基连接区域的传力机理和破坏模式,对现有的试验结果进行了精细化的有限元模拟,分析连接区域的传力机理和破坏过程,并利用校验后的有限元模型进行参数分析,探讨剪跨比、承插深度、桩墩直径比、桩基配箍率对连接区域抗震性能的影响。结果表明:提出的有限元模拟方法能够较为准确地模拟桩柱式墩-桩基连接区域的力学行为;连接区域的破坏模式表现为桥墩承插段对桩基杯口顶部的水平推力导致的桩基箍筋屈服;增大剪跨比、桩墩直径比、承插深度、桩基配箍率均能提高连接区域的承载力。
桩柱式桥墩由于施工简单,不设承台,基础占地面积小在中小跨径桥梁中应用广泛。桩柱式桥墩的最大弯矩位置位于地面以下,而桩基在震后检查和维修较为困难,因此为了使塑性铰形成于墩身,桩基直径通常大于墩身直径,导致桥墩与桩基需要配置各自独立的钢筋笼,在墩底形成桥墩纵筋与桩基纵筋的无接触搭接区域。为了探究连接区域的传力机理和破坏模式,并形成相应的设计方法,研究人员进行了大量的试验研究和数值分析。
McLean和Smit
本文对Tra
为了深入揭示连接区域的传力机理和破坏模式,为构建连接区域的简化设计方法提供指导,选取华盛顿州立大学系列试验中的试件DS2和DS4用于开展有限元模拟,试件的试验工作分别由Tra
如

图1 试件构造及配筋(单位:mm)
Fig.1 Details of specimens (Unit: mm)
试件 | 参数 | 墩纵筋 | 墩箍筋 | 桩纵筋 | 桩箍筋 |
---|---|---|---|---|---|
DS2 | /MPa | 463.3 | 482.7* | 454.4 | 482.7* |
/MPa | 735.7 | 655.3 | 702.6 | 757.5 | |
DS4 | /MPa | 448.2 | 482.7* | 475.8 | 482.7* |
/MPa | 661.9 | 717.1 | 675.7 | 675.7 |
注: *材性试验中未给出,根据规范进行取值。
试件 | 桥墩/MPa | 桩基、台座/MPa |
---|---|---|
DS2 | 49.4 | 44.5 |
DS4 | 48.9 | 46.2 |
采用DIANA有限元分析软件建立上述试件的三维模型(如
(1) |
(2) |
(3) |
式中:为混凝土圆柱体抗压强度平均值(MPa)。钢筋本构采用Dodd和Restrepo-Posada模

图2 有限元模型及网格划分
Fig.2 Configuration and mesh density of the numerical models
试件 | 参数 | 墩纵筋 | 桩纵筋 | 墩箍筋 | 桩箍筋 |
---|---|---|---|---|---|
DS2 | /MPa | 16.08 | 7.55 | 0.32 | 0.30 |
/MPa | 6.43 | 3.02 | 0.32 | 0.30 | |
/mm | 1 | 1.8 | 0.01 | 0.01 | |
/mm | 2 | 3.6 | 0.01 | 0.01 | |
/mm | 10.6 | 6.2 | 0.01 | 0.01 | |
DS4 | /MPa | 15.99 | 7.73 | 0.32 | 0.31 |
/MPa | 6.39 | 3.09 | 0.32 | 0.31 | |
/mm | 1 | 1.8 | 0.01 | 0.01 | |
/mm | 2 | 3.6 | 0.01 | 0.01 | |
/mm | 10.6 | 8.3 | 0.01 | 0.01 |
有限元模拟和试验的骨架曲线如

图3 骨架曲线对比
Fig.3 Comparison of backbone curves

图4 裂缝分布对比
Fig.4 Comparison of crack distribution

图5 不同漂移率下钢筋应变结果对比
Fig.5 Comparison of measured and computed reinforcement strain with various drift
为了保证传力路径可靠,充分发挥桥墩的延性性能,一方面需要保证伸入连接区域内的桥墩纵筋具有足够的锚固长度;另一方面需配置足够数量的箍筋以防止“撬动效应”的产生。McLean和Smit
(4) |
式中:为单根箍筋的横截面积;为箍筋屈服应力;为有效搭接长度;为纵筋的总横截面积;纵筋极限抗拉强度。进一步地,对于圆形截面桥墩与桩基纵筋的无接触搭接,提出了相应的三维拉压杆模型(
(5) |
考虑到
(6) |
式中:系数为墩柱中受拉钢筋根数占所有桥墩纵筋的比例,可通过截面的弯矩曲率分析得到,通常情况下可保守地取为0.5;有效搭接长度取为。

图6 McLean和Smith提出的拉压杆模型
Fig.6 Sturt and tie model proposed by McLean and Smith
部分学者对连接区域的拉压杆模型进行了改

图7 桩顶箍筋应力分布
Fig.7 Stress distribution of stirrup at the top of pile

图8 受拉侧与受压侧桩基箍筋应变对比
Fig.8 Comparison of pile stirrup strain in tension side and compression side
将连接区域的破坏机制归结于纵筋无接触搭接引起的桩基受拉侧箍筋屈服导致的另一结果是连接区域的承载力与墩柱的剪跨比无关。对剪跨比分别为3、6、9,桩墩直径比均为1.3,其余参数与DS4试件相同的3个模型进行分析,得到的墩底弯矩-漂移率曲线如
(7) |
式中:为墩底弯矩;、分别为墩顶、加载点到墩底的高度;为加载点的水平位移;、分别为墩顶竖向压力和加载点水平作用力。以桩基箍筋屈服作为连接区域破坏的极限状态,由图可知,随着剪跨比增大,连接区域的抗弯承载力不断增加,剪跨比为6、9的模型较剪跨比为3的模型抗弯承载力提高了7.3%、13.7%。剪跨比为3、6、9时,桩基箍筋屈服时的墩顶漂移率分别为1.70%、2.35%、3.23%。

图9 不同剪跨比下的弯矩—漂移率曲线
Fig.9 Comparison of Moment-column drift responses for the models with various shear-span ratio
以试件DS4为基准,通过变换参数,进一步探讨桩墩直径比、承插深度、桩基配箍率对试件力学行为的影响,拟定的模型参数如
编号 | /% | /(kN·m | /kN | ||
---|---|---|---|---|---|
A1 | 1.2 | 0.35 | 14.59 | 255.14 | |
A2 | 1.4 | 0.35 | 16.82 | 266.90 | |
A3 | 1.6 | 0.35 | 20.30 | 275.10 | |
A4 | 1.8 | 0.35 | 22.92 | 284.84* | |
B1 | 1.3 | 0.35 | \\ | 189.89 | |
B2 | 1.3 | 0.35 | 14.62 | 234.50 | |
B3 | 1.3 | 0.35 | 14.88 | 252.20 | |
B4 | 1.3 | 0.35 | 16.19 | 254.20 | |
C1 | 1.3 | 0.28 | 16.15 | 249.43 | |
C2 | 1.3 | 0.40 | 16.26 | 263.59 | |
C3 | 1.3 | 0.53 | 16.37 | 272.88 | |
C4 | 1.3 | 0.81 | 16.52 | 285.80* |
注: *仅发生墩柱弯曲破坏,桩基箍筋未屈服。

图10 不同桩墩直径比下的骨架曲线
Fig.10 Comparison of backbone curves with various connection diameter-to-column diameter ratios

图11 不同桩墩直径比下的桩基箍筋应力分布
Fig.11 Comparison of stress distribution of pile stirrups with various connection diameter-to-column diameter ratios

图12 不同承插深度下的骨架曲线
Fig.12 Comparison of backbone curves with various embedment depths

图13 不同承插深度下的桩基箍筋应力分布
Fig.13 Comparison of stress distribution of pile stirrups with various embedment depths

图14 不同桩基配箍率的骨架曲线
Fig.14 Comparison of backbone curves with various pile transverse reinforcement ratios
(1)本文提出的有限元模拟方法能够较为准确地模拟桩柱式墩-桩基连接区域的力学行为,数值模拟得到的骨架曲线、裂缝分布、应变分布均与试验吻合良好。
(2)连接区域的破坏模式表现为桥墩承插段对桩基杯口顶部的水平推力导致的桩基箍筋屈服,箍筋应力依然在加载方向前侧最大。
(3)增大剪跨比、桩墩直径比、承插深度、桩基配箍率均能提高连接区域的承载力。
(4)箍筋应力分布情况受桩基杯口的抗侧刚度控制,当承插深度大于,桩墩直径比小于1.5时,桩基杯口的抗侧刚度较小,箍筋应力近似于抛物线分布;当承插深度小于,桩墩直径比大于1.6时,桩基杯口的抗侧刚度较大,箍筋应力近似于线性分布。
作者贡献声明
张鹏辉:文章构思、起草与撰写;
周连绪:文章修改;
王志强:文章审阅、基金支持。
参考文献
MCLEAN D I, SMITH C L. Noncontact lap splices in bridge column-shaft connections[R]. Washington DC: Washington State Transportation Center, 1997. [百度学术]
AASHTO. LRFD bridge design specifications[S]. Washington D C: American Association of State Highway and Transportation Officals, 2017. [百度学术]
CALTRANS. Caltrans seismic design criteria version 2.0[S]. Sacramento: California Department of Transportation, 2019. [百度学术]
TRAN H V. Drilled shaft socket connections for precast columns in seismic regions[D]. Washington D C: University of Washington, 2012. [百度学术]
TRAN H V. Drilled shaft socket connections for precast columns in seismic regions[D]. Washington D C: University of Washington, 2015. [百度学术]
CHANG M T. Seismic performance of column-to-drilled-shaft connections in reinforced concrete bridges[D]. Washington D C: University of Washington, 2021. [百度学术]
CHENG Z, LIU D, LI S, et al. Performance characterization and design recommendations of socket connections for precast columns[J]. Engineering Structures, 2021, 242: 112537. [百度学术]
MURCIA-DELSO J, PUI-SHUM B S, STAVRIDIS A, et al. Required embedment length of column reinforcement extended into type II shafts[R]. Sacramento: California Department of Transportation, 2013. [百度学术]
LOTFIZADEH K H. High-strength steel reinforcement in critical regions of earthquake-resistant bridges[D]. San Diego: University of California, San Diego, 2019. [百度学术]
MASUD M. Non-contact lap splices in geometrically dissimilar bridge column to drilled shaft connections[D]. Houston: University of Houston, 2019. [百度学术]
CHEN H, MASUD M, SAWAB J, et al. Multiscale analysis of non-contact splices at drilled shaft to bridge column interface[J]. Engineering Structures, 2018, 176: 28. [百度学术]
CHEN H, MASUD M, SAWAB J, et al. Parametric study on the non-contact splices at drilled shaft to bridge column interface based on multiscale modeling approach[J]. Engineering Structures, 2019, 180: 400. [百度学术]
MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance[J]. Journal of Advanced Concrete Technology, 2003, 1(2): 91. [百度学术]
SELBY R G, VECCHIO F J. A constitutive model for analysis of reinforced concrete solids[J]. Canadian Journal of Civil Engineering, 1997, 24(3): 460. [百度学术]
HORDIJK D A. Local approach to fatigue of concrete[D]. Delft: Delft University of Technology, 1993. [百度学术]
FIB. Model code 2010-final draft: Volume 1[S]. Lausanne: International Federation for Structural Concrete, 2010. [百度学术]
DODD L L, RESTREPO-POSADA J I. Model for predicting cyclic behavior of reinforcing steel[J]. Journal of Structural Engineering, 1995, 121(3): 433. [百度学术]