摘要
基于自然的海岸修复与防护越来越受到人们关注,从海岸植被对水动力及泥沙运动影响机制的物理模型试验研究方面,介绍了试验研究中植被的描述方法,包括植被的分类、材料选择、特性表征等;综述了植被影响下的流场结构、消浪特征、形态阻力相关的研究进展;论述了悬沙浓度分布、泥沙再悬浮、沉积和冲刷模式等泥沙输运方面的研究成果;结合大量模型试验研究,提出了未来的研究趋势。
由于人们对海岸资源的过度开发利用,自然岸线受到严重损害,再加上气候变化条件下的极端海洋灾害频发,部分海岸尤其是砂质海岸严重蚀退。海岸生态环境越来越受到人们重视,2020年国家发展改革委和自然资源部发布的2021~ 2035年《全国重要生态系统保护和修复重大工程总体规划》中,明确提出全面保护自然岸线,重点推动典型海洋生态类型的系统保护和修复,综合开展岸线岸滩修复、生境保护修复、生态灾害防治、海洋保护地建设等,提高抵御海洋灾害的能力。力争2035年我国海洋生态恶化的状况得到全面扭转,自然海岸保有率不低于35%。
在海岸保护的生态工程解决方案中离不开植被,保护、恢复和利用沿海植被生境,是一项很有前途的战略,具有显著的减缓和适应气候变化的能
本文仅针对使用此方法的相关研究作了进展综述。首先对物理模型试验中常用的植被描述方法进行了简要介绍,然后分别从水动力、泥沙运动的角度论述了植被的影响,最后结合现有成果,提出了海岸植被生态防护机制物理模型试验研究的未来方向,以期为海岸生态防护工程和相关科学研究提供参考。
实际生态环境中植被多种多样,试验前必须首先确定研究区域的代表植物种类及形态,选取的代表植物既要便于物理模型试验的进行,又要尽量与实际植物相似。
物理模型试验模拟的植被分类主要概括为以下三种不同方法:一是按照植被刚度划分为柔性植被和刚性植被;二是按照植被与水深关系划分为挺水植被、沉水植被和浮式植被;三是按照植被生物性状可划分为草本、禾本和木本植被。具体海岸植被分区分类示意如

图1 海岸植被分区分类示意
Fig. 1 Distribution of coastal vegetation
植被状态的描述主要分为淹没与非淹没状态,当水深与植被高度相当时,具有一定柔性的植物受水流影响时而挺水时而沉水,根据挺水或沉水优势可进一步划分,具体如
植物分类 | 植物状态 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
按刚度 | 按与水深关系 | 按生物性状 | 非淹没状态 | 淹没状态 | |||||||
柔性 | 刚性 | 挺水 | 沉水 | 浮式 |
草本 (大叶藻) |
木本 (红树林) |
禾本 (芦苇) | 直立挺水或弯曲挺水 | 弯曲摇摆且挺水占优 | 弯曲摇摆且沉水占优 | 沉水或倒伏 |
(1) |
(2) |
(3) |
式中:m为单位床面面积内植被茎干数量;dv为单颗植被茎干直径;为单位草甸体积的植被前缘面积;h为植被高度;n为水动力方向上植被总行数;Δx、Δz分别为平行、垂直于水动力方向的两个连续植被茎干之间的距离。
对于模型植物材料的选择,由于相同条件下不同植被材料的消浪特性也不同,需要针对模拟的实体植物的形态大小和性质确定,常用的材料有木棒(包括竹棒、竹签)、塑料、实体植物等,也有学者直接采用现场植被携带其生长底质的移植方式,或者通过培养箱直接栽培育苗的方式进行试验,几种典型试验植被形式如

图2 几种试验植被形式示
Fig. 2 Several types of experimental vegetation
基于生态系统恢复的植被海岸防护工程被认为是更好更可持续的方法之一,不同动力环境(潮流、波浪、床面形态等)与不同植被特性(布置密度、根茎叶特征、分布形式等)之间的相互作用机理成为各国学者们研究的热点话题,而植被对水动力环境的影响是其他相关研究的基础,本节综述了植被作用下水动力环境的响应特征,包括潮流、波浪及波流耦合条件。
本节将从两种植被类型:沉水植被和挺水植被展开对流畅结构的研究。
水流在沉水海草植被作用下由于底部阻力作用产生尾流效应,因而具有掩护效果,如

图3 簇状沉水植被主导的水流结构示
Fig. 3 Flow structure dominated by cluster submerged vegetation
随着研究的逐渐深入,逐渐涌现出针对海岸带波流耦合条件下的研究,针对沉水刚性植被,布置较稠密时,波流耦合条件下的平均流速明显低于纯流条件;而布置较稀疏时,与纯流相比,波流耦合平均流速在底层减小,在上层增
挺水植被往往分布于较沉水植被更浅水的海岸区域,不同形态的植被具有不同的茎干及叶片结构,分布形式也各不相同。当植被不完全布满整个水槽宽度时,植被区流速结构在纵向上(水流方向)与并列的空槽区具有不同趋势,但他们具有相同的纵向调整距
消浪特征可通过波高、波压力、波浪爬高、波能等表征,除了针对一般情况下的规则波与不规则波的研究以外,还有针对海啸波(孤立波)等不同形式波浪的研究。
通常情况下,植物的冠部消波能力最强,其次为杆部和根部,且植物密度越大、相对宽度越大,消波效能越高,但消波效果的增速会随之放
波浪衰减作用同样受到近岸水流的影响,因此波流耦合条件的波浪衰减特征也是一个重要的更贴合实际的研究方向。Zhang
海啸波的首波与孤立波相近,因此孤立波成为研究海啸波首波的方式。与规则波或随机波类似,Gong
植被以形态阻力、茎干及叶片运动的形式来减弱水流、耗散波能,对植被主导的水流阻力的全面认识至关重要。目前该方面的研究主要是阻力系数CD与雷诺数Re和KC数(Keulegan⁃Carpenter数,用于描述流体中惯性力与黏性力的关系,KC数越大表示紊动的影响越大)的关系。本节将从水流和波浪两种动力条件分别展开介绍。
对于随机分布、均一直径的挺水圆形刚性模拟植被产生的阻力,平均阻力系数CD随柱体雷诺数Re的增加而减小,随植被密度(ϕ)的增加而增
波浪作用下的植被阻力预测通常与KC数相关联,相较于雷诺数和厄塞尔数,KC数可更好地预测阻力系数,且只有试验设置,特别是植被密度,才能影响预测公
植被改变了局部水动力环境,进而通过改变沉积物再悬浮及输移过程中的挟带能力影响泥沙冲刷和淤积演变,本节将从悬沙特征及冲淤模式方面展开综述。
悬沙浓度及泥沙再悬浮不仅关乎该海域冲淤演变过程,同时对水质生态方面也至关重要,本节将从不同动力条件分别综述。
为探究挺水植被茎干特征(直径、密度ϕ)对紊动和泥沙再悬浮的影响,在Liu

图4 挺水植被影响下的水流调整示
Fig. 4 Flow adjustment under the influence of emergent vegetation
波浪是导致掀沙的重要因素,波浪驱动下,床面紊动能与波速均方根的平方呈线性关系,沉积物再悬浮的临界波速与植被密度(ϕ)相
植被影响下,水动力条件是泥沙运动的基础,而剖面、地貌形态特征则是泥沙运动的最终表现,本节将对冲刷和沉积模式的研究展开介绍。
不同植被分布特征和形态特征对床面冲淤具有不同影响,包括植被的密度、排布方式、渗透性、弯曲程度等。对于完全舒展的、具有透水性的单个树状植物,水流作用下床面形成两道细长的冲刷沟并带有明显的山脊;而被紧紧包裹的不透水的相同植被使得冲刷趋于局部化,在观测区域内形成更多沉积,且其位置距植被更短。对于易弯曲的植被而言,随着弯曲后投影面积的减少及沉水部分体积的增加,冲刷也相应减少,同时将形成更细长的冲刷沟并向下游扩
沉水植被往往具有更强柔性的叶片,对于横跨水槽的沉水植被斑块,纵剖面(顺流-垂向)的回旋涡流或湍流扩散决定了尾迹长度,此区域内流速减小、沉积增加,且随着植被密度减小,回旋涡流向更远的下游移动,尾迹长度增大,柔性叶片的存在也扩展了尾迹长度,因而增大了泥沙沉积区域;相反,圆形植被斑块布置情况下,尾迹在水平面上(顺流-水平侧向)产生振荡,尾迹不稳定的开始决定了沉积区域的长度。不管是圆形还是横跨水槽植被斑块形态,沉积量越大,沉积区域越

图5 沉水植被前缘水流调整示
Fig. 5 Flow adjustment in the margin of submerged vegetation
近岸波浪引起的上冲流、波浪爬高及越浪等是造成海岸侵蚀的重要影响因素,盐沼边缘陡坎在波浪作用下不断蚀退,而通常情况下植被作用可使岸坡破坏延迟,且与根部的生长有一定关系,总体上提供了稳定岸坡的作
随着海岸灾害频率的不断升高,风暴浪也成为研究重点,基于Sallenge
除此之外,海堤在世界沿海地区广泛应用,用于保护低洼地区,抵御沿海灾害。因此,堤顶和向陆坡的破坏机
对不同类型海岸的生态修复工程而言,如果不够了解其生态系统恢复的动力地貌响应特征,粗放化的工程实施可能带来一系列海岸侵蚀或淤积问题。针对典型沙坝-潟湖海岸,我们进行了系列植被影响下的物理模型试验研究,包括不同材料不同类型植被作用,引入了考虑植被布置带宽的植被加权密度,并考虑沙坝出水高度、水深和入射波高的新参数,提出了布置于坝顶的挺水植被作用下波高衰减率与新参数的线性数学关系,同时分析得到了前丘最大侵蚀厚度与植被加权密度的二次多项式数学关
本节将基于对现有研究的总结,提出未来相关研究的展望。
植被对水动力的影响主要分为:水流、波浪和波流耦合条件下的流场结构或消浪特征研究,以及植被产生的水流阻力的研究。流场结构方面主要针对横向、纵向、垂向流速结构分布特征,以及紊动能变化特征;消浪特征则主要从波高的衰减、波压力变化、波能转换等方面切入研究,除了规则波与随机波两种波浪类型外,还有考虑典型孤立波等不同形式波浪的研究,同时,还有少数针对波流同向与波流反向条件的相关探究;水流阻力则主要是研究阻力系数与雷诺数、KC数之间的关系,同时开始关注叶片与茎干的相互作用,提出遮蔽系数来描述这一点。植被对泥沙输运的影响主要分为再悬浮特征、悬沙浓度变化规律,以及不同沉积与冲刷模式,包括冲淤形态变化规律、波浪爬高和越浪的冲刷机制等方面的研究。而针对植被特征而言,除了考虑沉水与挺水、刚性与柔性的不同特性以外,还包含了单株植物、簇状植被、植被斑块等不同布置特征的影响。除此以外,还有针对典型海岸形式——沙坝-潟湖海岸上植被影响的研究,以及海堤植被护坡的研究等。
结合以上研究进展的详细论述,本文提出海岸植被生态防护机制物理模型试验研究的未来展望。在研究植被对海岸动力地貌影响的过程中,植被本身也将受到水动力条件、盐度、地下水、土壤种类、季节等的反作用,包括连根拔起、种群分布、季相变化等,因此,未来可增加以植被生长状态为研究对象,探究水动力阈值问题,比如早期育苗脱落的临界流速问题;岸滩冲淤演变应与植被特征、动力条件联系起来,更好地为相关工程提供科学指导;物理模型试验中应朝着更接近真实环境植被的方向发展,包括不同季节地上生物量与地下生物量的变化和水动力变化、底质土壤类型等方面的考虑,这也对试验技术的创新提出更高的要求;本文尚未发现在波流耦合试验条件下的针对植被对泥沙输运影响的试验研究,所以波流耦合下植被对床面冲淤影响的试验研究需要将来深入的探索;另外,几乎所有物理模型试验研究均为单一植被形式,而真实环境下常常是沉水植被-漂浮植被,以及海岸陆域的草本-灌丛-乔木等不同类型植被的组合作用情况。因此,植被组合作用成为未来物理模型试验研究的一个重要方向;除此之外,针对典型海岸的植被防护机制研究十分欠缺,未来应完善归纳针对典型海岸动力地貌对植被响应特征的研究;同时,在研究方法上可结合数学模型和现场观测,弥补物理模型试验的欠缺和不足之处。
总的来说,未来需要结合海洋科学、海岸工程、生态环境等不同领域来研究植被对海岸防御的关键贡献,应从交叉学科的视角出发,更加全面地展开基础研究。
作者贡献声明
匡翠萍:论文撰写与修改;
丛 新:论文撰写与修改;
范家栋:资料整理;
李宏义:资料整理。
参考文献
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation [J]. Nature Climate Change, 2013, 3(11): 961. [百度学术]
TANINO Y, NEPF H M. Laboratory investigation of mean drag in a random array of rigid, emergent cylinders [J]. Journal of Hydraulic Engineering, 2008, 134(1): 34. [百度学术]
ZHANG J, LEI J, HUAI W, et al. Turbulence and particle deposition under steady flow along a submerged seagrass meadow [J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015985. [百度学术]
TüRKER U, YAGCI O, KABDASLI M S. Impact of nearshore vegetation on coastal dune erosion assessment through laboratory experiments [J]. Environmental Earth Sciences, 2019, 78(19): 1. [百度学术]
WU L, YANG X. Factors influencing bending rigidity of submerged vegetation [J]. Journal of Hydrodynamics, 2011, 23(6): 723. [百度学术]
王祥斌, 吴龙华. 挺水植被弯曲变形对水流阻力的影响研究[J]. 人民长江, 2019, 50(5): 160. [百度学术]
WANG X, WU L. Influence of emerged vegetation bending deformation flow resistance [J]. Yangtze River, 2019, 50(5): 160. [百度学术]
蒋昌波, 管喆, 陈杰, 等. 红树林对规则波作用下岸滩剖面变化影响实验研究[J]. 热带海洋学报, 2017, 36(1): 95. [百度学术]
JIANG C B, GUAN Z, CHEN J, et al. Experimental study on changes of cross-shore beach profile by regular waves under the influence of mangroves [J]. Journal of Tropical Oceanography, 2017. 36(1):95. [百度学术]
LARA J, MAZA M, ONDIVIELA B, et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 1: Guidelines for physical modeling [J]. Coastal Engineering, 2016, 107: 70. [百度学术]
YAMASAKI T N, JIANG B, JANZEN J G, et al. Feedback between vegetation, flow, and deposition: A study of artificial vegetation patch development [J]. Journal of Hydrology, 2021, 598: 126232. [百度学术]
CONG X, KUANG C, HAN X, et al. Experimental observation on wave and profile changes in a sandbar-lagoon system with emergent aquatic plants on the sandbar crest [C]//The 31st International Ocean and Polar Engineering Conference: Onepetro, 2021: 2216-2226. [百度学术]
LEI J, NEPF H. Evolution of flow velocity from the leading edge of 2-D and 3-D submerged canopies [J]. Journal of Fluid Mechanics, 2021, 916: A36. [百度学术]
VILLANUEVA R, THOM M, VISSCHER J, et al. Wake length of an artificial seagrass meadow a study of shelter and its feasibility for restoration [J]. Journal of Ecohydraulics, 2021, 7(1): 77. [百度学术]
TAPHORN M, VILLANUEVA R, PAUL M, et al. Flow field and wake structure characteristics imposed by single seagrass blade surrogates [J]. Journal of Ecohydraulics, 2021, 7(1): 58. [百度学术]
HU Z, LEI J, LIU C, et al. Wake structure and sediment deposition behind models of submerged vegetation with and without flexible leaves [J]. Advances in Water Resources, 2018, 118: 28. [百度学术]
CHEN M, LOU S, LIU S, et al. Velocity and turbulence affected by submerged rigid vegetation under waves, currents and combined wave-current flows [J]. Coastal Engineering, 2020, 159: 103727. [百度学术]
LOU S, CHEN M, MA G, et al. Laboratory study of the effect of vertically varying vegetation density on waves, currents and wave-current interactions [J]. Applied Ocean Research, 2018, 79: 74. [百度学术]
YAN C, SHAN Y, SUN W, et al. Modeling the longitudinal pro les of streamwise velocity in an open channel with a model patch of vegetation [J]. Environmental Fluid Mechanics, 2020, 20: 1441. [百度学术]
XU Y, NEPF H. Measured and predicted turbulent kinetic energy in flow through emergent vegetation with real plant morphology [J]. Water Resources Research, 2020, 56(12): e2020WR027892. [百度学术]
HORSTMAN E, BRYAN K, MULLARNEY J, et al. Are flow-vegetation interactions well represented by mimics? A case study of mangrove pneumatophores [J]. Advances in Water Resources, 2018, 111: 360. [百度学术]
李佳皓, 宋启蒙, 刘佳安, 等. 航道生态护岸消波效能的研究进展[J]. 中国水运(下半月), 2019, 19(9): 136. [百度学术]
LI J, SONG Q, LIU J, et al. Review of wave dissipation efficiency of waterway ecological revetment [J]. China Water Transport, 2019, 19(9): 136. [百度学术]
彭浩, 陈杰, 蒋昌波, 等. 单株和簇状植物分布方式对消波的影响试验[J]. 水利水电科技进展, 2019, 39(4): 27. [百度学术]
PENG H, CHEN J, JIANG C, et al. Experimental study on wave attenuation effects by single and patchy rigid vegetation [J]. Advances in Science and Technology of Water Resources, 2019, 39(4): 27. [百度学术]
张明亮, 张洪兴, 徐红印, 等. 规则波和不规则波在刚性植物区波能衰减的试验研究[J]. 大连海洋大学学报, 2017, 32(3): 369. [百度学术]
ZHANG M, ZHANG H, XU H, et al. Energy attenuation of regular and irregular waves in rigid vegetated waters [J]. Journal of Dalian Ocean University, 2017, 32(3): 369. [百度学术]
赵东梁, 韩梅, 喻国良. 浮式植物体消浪效果的试验研究[J]. 水资源保护, 2015, 31(5): 53. [百度学术]
ZHAO D, HAN M, YU G. Experimental study on effectiveness of floating vegetation on wave dissipater [J]. Water Resources Protection, 2015, 31(5): 53. [百度学术]
孙飚, 董增川, 韦一鸣, 等. 水深与刚性植被高度的相对关系对防浪林消浪效果的影响[J]. 黑龙江水利科技, 2020, 48(11): 1. [百度学术]
SUN B, DONG Z, WEI Y, et al. Influence of the relative relationship between water depth and height of rigid vegetation on wave dissipation effect of wave break forest [J]. Heilongjiang Hydraulic Science and Technology, 2020, 48(11): 1. [百度学术]
龚尚鹏, 陈杰, 蒋昌波, 等. 规则波作用下植物概化模型消波实验研究[J]. 水动力学研究与进展(A辑), 2020, 35(2): 213. [百度学术]
GONG S, CHEN J, JIANG C, et al. Experimental study on wave elimination of vegetation generalized model under regular wave action [J]. Chinese Journal of Hydrodynamics, 2020, 35(2): 213. [百度学术]
石麒琳, 冯卫兵, 邓伟, 等. 柔性植物对海堤最大波压力的影响试验研究[J]. 科学技术与工程, 2013, 13(31): 9454. [百度学术]
SHI Q, FENG W, DENG W, et al. Experimental study of the effect of flexible vegetation on the maximum wave pressure [J]. Science Technology and Engineering, 2013, 13(31): 9454. [百度学术]
VEELEN T J V, FAIRCHILD T P, REEVE D E, et al. Experimental study on vegetation flexibility as control parameter for wave damping and velocity structure [J]. Coastal Engineering, 2020, 157: 103648. [百度学术]
ZHANG X. Wave damping by flexible marsh plants influenced by current [J]. Physical Review Fluids, 2021, 6(10): 100502. [百度学术]
HU Z, LIAN S, WEI H, et al. Laboratory data on wave propagation through vegetation with following and opposing currents [J]. Earth System Science Data, 2021, 13(10): 4987. [百度学术]
MAZA M, LARA J, LOSADA I, et al. Large-scale 3-D experiments of wave and current interaction with real vegetation. Part 2: Experimental analysis [J]. Coastal Engineering, 2015, 106: 73. [百度学术]
GONG S, CHEN J, JIANG C, et al. Prediction of solitary wave attenuation by emergent vegetation using genetic programming and artificial neural networks [J]. Ocean Engineering, 2021, 234: 109250. [百度学术]
曾思益, 陈杰, 蒋昌波, 等. 基于根茎叶概化模型的孤立波消减特性实验[J]. 海洋科学进展, 2019, 37(4): 588. [百度学术]
ZENG S, CHEN J, JIANG C, et al. Experimental investigation of the effects of vegetation on solitary wave attenuation based on a generalized model of root, stem, and canopy [J]. Advances in Marine Science, 2019, 37(4): 588. [百度学术]
姚宇, 唐梦君, 唐政江, 等. 非淹没刚性植被影响下孤立波在岸滩上的爬高[J]. 水利水电科技进展, 2019, 39(2): 31. [百度学术]
YAO Y, TANG M, TANG Z, et al. Solitary wave run-up on beach slopes influenced by unsubmerged rigid vegetation [J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 31. [百度学术]
ZHANG X, NEPF H. Flow-induced reconfiguration of aquatic plants, including the impact of leaf sheltering [J]. Limnology and Oceanography, 2020, 65(11): 2697. [百度学术]
LEI J, FAN D, ANGERA A, et al. Drag force and reconfiguration of cultivated Saccharina latissima in current [J]. Aquacultural Engineering, 2021, 94: 102169. [百度学术]
ZHANG Z, HUANG B, TAN C, et al. A study on the drag coefficient in wave attenuation by vegetation [J]. Hydrology and Earth System Sciences, 2021, 25(9): 4825. [百度学术]
ZHANG X, LIN P, NEPF H. A simple‐wave damping model for flexible marsh plants [J]. Limnology and Oceanography, 2021, 66(12): 4182. [百度学术]
ZHANG X, NEPF H. Wave-induced reconfiguration of and drag on marsh plants [J]. Journal of Fluids and Structures, 2021, 100: 103192. [百度学术]
WANG Y, YIN Z, LIU Y. Predicting the bulk drag coefficient of flexible vegetation in wave flows based on a genetic programming algorithm [J]. Ocean Engineering, 2021, 223: 108694. [百度学术]
LIU C, SHAN Y, NEPF H. Impact of stem size on turbulence and sediment resuspension under unidirectional flow [J]. Water Resources Research, 2021, 57(3): e2020WR028620. [百度学术]
LIU C, SHAN Y. Impact of an emergent model vegetation patch on flow adjustment and velocity [C]//Proceedings of the Institution of Civil Engineers-water Management: Thomas Telford Ltd., 2021: 55-60. [百度学术]
TINOCO R O, COCO G. A laboratory study on sediment resuspension within arrays of rigid cylinders [J]. Advances in Water Resources, 2016, 92: 1. [百度学术]
XU Y, NEPF H. Suspended sediment concentration profile in a typha latifolia canopy [J]. Water Resources Research, 2021, 57(9): e2021WR029902. [百度学术]
易雨君, 唐彩红, 张尚弘. 波浪条件下刚性植被茎干紊流对沉积物再悬浮的促进作用[J]. 湖泊科学, 2020, 32(6): 1827. [百度学术]
YI Y, TANG C, ZHANG S. Effect of stem-generated turbulence on sediment resuspension within rigid vegetation canopies in waves [J]. Journal of Lake Sciences, 2020, 32(6): 1827. [百度学术]
MARIN-DIAZ B, BOUMA T J, INFANTES E. Role of eelgrass on bed‐load transport and sediment resuspension under oscillatory flow [J]. Limnology and Oceanography, 2019, 65(2): 426. [百度学术]
LOU S, CHEN M, MA G, et al. Sediment suspension affected by submerged rigid vegetation under waves, currents and combined wave-current flows [J]. Coastal Engineering, 2022(1): 104082. [百度学术]
YAGCI O, CELIK M F, KITSIKOUDIS V, et al. Scour patterns around isolated vegetation elements [J]. Advances in Water Resources, 2016, 97: 251. [百度学术]
SHAN Y, ZHAO T, LIU C, et al. Turbulence and bed load transport in channels with randomly distributed emergent patches of model vegetation [J]. Geophysical Research Letters, 2020, 47(12): e2020GL087055. [百度学术]
FRANCALANCI S, BENDONI M, RINALDI M, et al. Ecomorphodynamic evolution of salt marshes Experimental observations of bank retreat processes [J]. Geomorphology, 2013, 195: 53. [百度学术]
FIGLUS J, SIGREN J M, ARMITAGE A R, et al. Erosion of vegetated coastal dunes [C]//Coastal Engineering Proceedings.Seoul:[S.n.], 2014: 20-28. [百度学术]
FIGLUS J, SIGREN J M, POWER M J, et al. Physical model experiment investigating interactions between different dune vegetation and morphology changes under wave impact [C]//Proceedings of Coastal Dynamics.Helsingor:[S.n.],2017: 470-480. [百度学术]
FEAGIN R, FURMAN M, SALGADO K, et al. The role of beach and sand dune vegetation in mediating wave run up erosion [J]. Estuarine, Coastal and Shelf Science, 2019, 219: 97. [百度学术]
江晨辉, 曹海锦, 冯卫兵, 等. 规则波作用下刚性植被海岸准静态平衡剖面试验[J]. 水运工程, 2019(4): 7. [百度学术]
JIANG C, CAO H, FENG W, et al. Experiment of quasi-static equilibrium profile of rigid vegetation coast under regular wave action [J]. Port and Waterway Engineering, 2019(4): 7. [百度学术]
HOLZENTHAL E R, WENGROVE M E, HILL D F. Mechanisms of sediment transport around finite patches of submerged aquatic vegetation [J]. Estuarine, Coastal and Shelf Science, 2022,273: 107905. [百度学术]
DALRYMPLE R A, KIRBY J T, HWANG P A. Wave diffraction due to areas of energy dissipation [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1984, 110(1): 67. [百度学术]
TURKER U, KABDAşLı M S. Average sediment dislocation analysis for barred profiles [J]. Average Sediment Dislocation Analysis for Barred Profiles, 2004, 31(14): 1741. [百度学术]
SALLENGER A H. Storm impact scale for barrier islands [J]. Journal of Coastal Research, 2000,16(3): 890. [百度学术]
SILVA R, MARTíNEZ M, ODéRIZ I, et al. Response of vegetated dune―beach systems to storm conditions [J]. Coastal Engineering, 2016, 109: 53. [百度学术]
ODéRIZ I, KNöCHELMANN N, SILVA R, et al. Reinforcement of vegetated and unvegetated dunes by a rocky core: A viable alternative for dissipating waves and providing protection? [J]. Coastal Engineering, 2020, 158: 103675. [百度学术]
FEAGIN R A, LOZADA B S M, RAVENS T M, et al. Does vegetation prevent wave erosion of salt marsh edges? [J]. Proceedings of the National Academy of Sciences, 2009, 106(25): 10109. [百度学术]
SCHüTTRUMPF H, OUMERACI H. Layer thicknesses and velocities of wave overtopping flow at seadikes [J]. Coastal Engineering, 2005, 52(6): 473. [百度学术]
PAN Y, LI L, AMINI F, et al. New understanding on the distribution of individual wave overtopping volumes over a levee under negative freeboard [J]. Journal of Coastal Research, 2016, 75(S1): 1207. [百度学术]
PONSIOEN L, DAMME M V, HOflAND B, et al. Relating grass failure on the landside slope to wave overtopping induced excess normal stresses [J]. Coastal Engineering, 2019, 148: 49. [百度学术]
PAN Y, CHEN Y, ZHANG T, et al. Laboratory study on erosion of vegetated HPTRM system under high-speed open-channel flow [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2018, 144(1): 04017038. [百度学术]
KUANG C, HUANG G, CONG X, et al. Experimental study on wave attenuation by a sandbar with emerged rigid vegetation [C]//The 31st International Ocean and Polar Engineering Conference. Onepetro:[S.n.], 2021: 2211-2215. [百度学术]
CONG X, KUANG C, HUANG G, et al. Experimental study on the morphodynamic evolution of sandbar-lagoon system with emergent vegetation [J]. Coastal Engineering, 2023,184: 104340. [百度学术]
CONG X, KUANG C, LI H, et al. Nonlinear wave propagation in a vegetated sandbar-lagoon system [C]// The 12th International Workshop on Ship and Marine Hydrodynamics. [S.l.]:IOP Publishing, 2023:1-9. [百度学术]
丛新, 匡翠萍, 武云龙, 等. 侵蚀浪条件下沉水植被对沙坝-潟湖海岸的冲淤影响研究[J]. 热带海洋学报, 2022, 41(4): 31. [百度学术]
CONG X, KUANG C, WU Y, et al. Study on erosion and deposition in a sandbar-lagoon system influenced by submerged vegetation under erosion wave conditions [J]. Journal of Tropical Oceanography, 2022, 41(4): 31. [百度学术]
CONG X, KUANG C, LIU H, et al. Experimental observation on wave and profile changes in a sandbar-lagoon system by submerged vegetation on the sandbar slope [C]//Australasian Coasts & Ports 2021 Conference.Christchurch: [S.n.], 2022: 1014-1019.. [百度学术]