摘要
我国垃圾分类全面实施后厨余垃圾产量骤增,目前采用主流的厌氧消化工艺因沼气利用率低、产品附加值低、沼液处理成本高等问题导致项目经济效益不佳,厨余垃级资源化利用技术亟需升级。有机物厌氧发酵制备的有机酸工业用途广泛,其中乙酸是医药、化工等行业的基础原料或者重要中间体,近年来由于能源危机、原材料稀缺以及环境问题促使生物基乙酸需求量日益增加,厨余垃圾发酵制备乙酸为有机固废高值化利用和能源绿色低碳转型提供新出路。通过梳理厨余垃圾厌氧发酵产乙酸过程及其生物代谢机制,阐述不同参数条件对乙酸产量的影响,分析探索提高乙酸产量的方法,为厨余垃圾厌氧产乙酸实际工程应用推广提供参考。
随着我国垃圾分类全面实施,厨余垃圾产量骤
乙酸作为一种重要的化工原料中间体,广泛应用于食品、化工、医药等行业,常用于生产精对苯二甲酸、乙酸乙烯、乙酸酯、乙酸酐以及氯乙酸等化合物。由于能源危机、化石燃料紧缺促使全球对生物乙酸的需求量稳步成
厨余垃圾发酵过程中各组分的降解途径复杂,发酵产物种类繁多。有学

图1 厨余垃圾发酵产乙酸主要途径示意图(仅给出了关键步骤和关键酶)
Fig. 1 Schematic diagram of main ways to produce acetic acid by fermentation of kitchen waste (only key steps and key enzymes were shown)
不同运行条件对发酵系统中的微生物群落结构和生物作用影响程度不等,进而导致发酵产物种类及产量出现差别,因此研究发酵过程中的影响因子及贡献率对定向调控产乙酸意义重大。
适当提高发酵高温可一定程度上改变发酵原料的特性,例如高温可以提高细胞破壁、胞内有机物质溶出、有机物液化、大分子有机物降解为可溶性的小分子以及溶解态有机物向有机酸转化的速
碱性条件的·OH不仅能破坏有机垃圾的絮体结构,水解、皂化蛋白质和脂多糖,破坏多孔介质结构,增加溶解性COD(SCOD)、溶解性碳水化合物(SPS)、尤其是溶解性蛋白质(SPN)的溶出,还可以促进不溶物质转化为可溶性物质移至液相,能迅速地被微生物代谢所利用,进而促进发酵底物酸
氧化还原电位ORP:厨余垃圾中有机物降解和微生物代谢过程中涉及一系列氧化还原反应,负ORP水平利于发酵底物尤其是蛋白质的增溶降
有机负荷OL:OL直观上是发酵底物量,直接影响系统群落结构,体现微生物处理有机物的能
碳氮比:合适的碳氮比是微生物生长所必须的重要条件,为提高厌氧发酵VFAs的产量,常用的方法有添加额外碳源、氮源等。JIA Shutin
盐和油脂:厨余垃圾中富含盐分和油脂,两者浓度过高均会对微生物生长产生一定的限制。王
其他成分:除了有机组分、盐份、油类等主要成分外,厨余垃圾中亦会掺杂少量的其他组分,如硫代亚砜(俗称“大蒜素”)、聚丙烯酸等。硫代亚砜存在于葱属植物的各个部位,会在厨余垃圾中积累,可转化为多种含活性硫基团的衍生物,构成广谱抑菌功能影响细菌的生长和繁
厨余垃级产酸发酵过程复杂,存在酸产量不高且种类分散等诸多问题。从产酸机理和微生物代谢途径看,提高乙酸产量首先考虑从正向促进丙酮酸和乙酰辅酶A的生成;其次,应避免乙酸消耗或抑制其他代谢路线;最后,原位剥离系统中已产生的乙酸,从而减少酸抑制促进发酵反应继续进
如前文所述,适当提高温度或者控制碱性条件有利于大分子的水解和有机酸的产生。为提高有机酸的产量,研究者一般首先考虑利用调控温度和pH,吴
有研究者发现,虽然采取高温、碱性能提高短链脂肪酸产量和积累,但因为有机物溶解速率的限制,仍需较长发酵时间,因此额外添加活性成分成为研究热点。铁是微生物生长过程中的必须元素,添加铁(如零价
为增强目标产物VFAs和乙酸的产量,最直接的强化手段即纯菌培养发酵,显然不适合发酵系统复杂的厨余垃级开放式发酵。除了通过调控运行条件促使产乙酸菌群的生长,研究者还考虑充分利用菌群协同作用机制。例如,LI Yan
综上,不同调控手段对提高厨余垃级发酵乙酸产量的效果差异较大(如
发酵底物 | 操作条件 | VFA产量 | 乙酸 | 引文 |
---|---|---|---|---|
WAS和厨余垃圾 | pH 8、C/N比22、温度37℃、发酵时间6d |
0.692 gCOD·(gVS | 29.9% |
CHEN Yinguang |
废活性污泥 | 1% NaOH (v/v) 碱催化耦合高压灭菌和超声波处理 |
0.7 gSCA·(gSCOD |
0.15g· |
KUMAR AN |
厨余垃圾 | pH6,RT20d,30℃,接种厌氧活性污泥 |
0.918 gVFA·(gVSS | 17% |
WANG Ku |
厨余垃圾 |
接种5%污泥,添加10 g· |
22.25 gCOD· | 72% |
JIN Yong |
马铃薯果皮废弃物 | Fe0纳米颗粒 |
0.710 gCOD·(gVS | 70% |
YANG Guang |
活性污泥 |
1.54 mg· |
SCFAs 0.370 gCOD·(gVSS | / |
ZHAO Jianwei |
厨余垃圾 | 酵母菌和醋酸菌菌株加强乙醇型发酵 |
30.22 g· |
25.88g· |
LI Yang |
乙酸纯度直接影响其后续高值化利用途径的选择。乙酸发酵液成分复杂,且涉及多种挥发性有机酸和中间产物分离难度较大,通常需要经过所示“过滤-乙酸回收-离子去除-浓缩净化-(升级转化衍生物)-配方产品
回收方法 | 操作步骤 | 优点 | 缺点 |
---|---|---|---|
蒸馏 | 通常用氨中和酸得到羧酸铵,与酒精混合产生酯,通过蒸馏分离。 |
易于安装 产品纯度高 产品可作肥料 |
能耗高 投资高 |
沉淀 | 在溶液中加入钙基盐中和有机酸,产生羧酸钙溶液,然后进行蒸发结晶或进一步分离浓缩。 |
易于安装 产品收率高 产品纯度高。 |
产生固体废物,容易二次污染 能耗高 |
吸附 | 吸附剂和/或离子交换材料用于捕获羧酸离子或VFAs化合物的质子化形式 |
较低投资成本 易于安装和操作 选择性相对较高 |
高成本和高能耗 吸附能力较低 |
电渗析 | 依靠电场作用,带负电荷的游离VFAs通过阴离子交换膜向电渗析器的阳极移动。 |
可获得高浓度的羧酸盐 无需调整pH值 |
需进一步净化 难以扩大规模 高能耗 较高膜污染 |
溶剂萃取 | 用有机溶剂或不加萃取剂添加剂从水溶液中提取羧酸 |
产品回收率高 低成本 高选择性 |
原料需酸化 萃取剂需再生 |
膜法分离 | 膜首先保留和浓缩一部分混合出水;然后,将浓缩液或渗透液进一步分馏/纯化,以获得所需的物质。 |
产品回收率高 易于扩大规模 稳定可靠 低能源需求 |
膜污染 存在更复杂的待解决问题 |
吸附法:选用具有选择性的吸附材料与溶液中的乙酸相结合使其从发酵液中剥离,然后通过解析获得乙酸。厨余垃圾发酵产物复杂,各组分对活性炭等传统吸附剂都有较强的亲和力,因此传统吸附剂通常会导致产品污染,不易用于发酵物中乙酸分离。带有阳离子或阴离子交换基团的离子交换树脂则在包括乙酸在内的羧酸分离效果明显。HASAN
萃取法:萃取是乙酸回收研究最多的技术,乙酸可以通过与脂肪族和芳烃、碳键合的含氧萃取剂、磷键合的含氧萃取剂的溶剂化以及与胺基化合物的相互作用被提取出来。例如,利用三正辛胺/2-乙基-1-己醇(TOA浓度90 wt.%)的溶剂从裂解油中萃取乙酸,乙酸萃取率达到90%左
膜法:WU Haora
综上,乙酸分离提纯方法很多,每种技术都需要一定的能量,且在实际应用中都有不同的生命周期。客观评估乙酸分离成本、进行全面的技术经济分析,是乙酸分离提纯技术选择的重点。
石油催化方法生产乙酸存在效率低、催化剂昂贵和反应条件极端等缺点,因此替代性生化方法制备生物乙酸逐渐受到各界关注。厨余垃圾酸发酵所得的未提纯发酵液富含小分子酸,可作为污水处理反硝化碳源,乙酸发酵液的脱氮效果与乙酸钠相似,在总氮去除率、总磷去除和有机物消耗率多方面明显优于葡萄
乙酸是化工、制药、能源等各个行业的基础化学原料之一,用途颇广。
众所周知,醋酸作为食品行业常用的溶剂、食品调味、酸度调节剂和风味成
乙酸可以用于生产油漆、涂料和印刷油墨的制造用到的乙酸酯,其中,乙酸酯化乙醇制备的乙酸乙酯是一种绿色溶剂,广泛用作稀释剂、溶剂和香
以厨余垃圾为基质制备高浓度乙酸,不仅可以提高厨余垃圾的资源化利用率,还可从废物中创造价值,节约化石能源,为我国能源绿色低碳转型提供新思路。然而,厨余垃圾中的有机物代谢机理复杂,现有发酵手段制得的总VFAs浓度有限且乙酸占比不高,很难真正实现高值化利用,要与化石燃料乙酸竞争并占领一定的乙酸市场份额更是面临着巨大的挑战。为此,通过预处理、碱性调控、投加催化剂或者其它活性成分等调控手段干预有机物降解途径,促使有机物和中间代谢产物能定向转化成乙酸,进而提高乙酸产率制备高浓度乙酸具有重要意义。
作者贡献声明
刘 峰:论文撰写、图表绘制及论文修改;
陈银广:论文写作指导;
贺北平:资助项目的获取,论文质量控制;
吴朝锋:论文质量控制。
参考文献
蒋建国,耿树标,罗维, 等. 2020年中国垃圾分类背景下厨余垃圾处理热点回眸[J]. 科技导报, 2021, 39(1): 261. [百度学术]
JIANG Jianguo, GENG Shubiao, LUO Wei, et al. Review of hotspots of kitchen waste treatment in context of garbage classification in China in 2020[J]. Science and Technology Review, 2021, 39(1): 261. [百度学术]
MA S, ZHOU C, CHI C, et al. Estimating physical composition of municipal solid waste in china by applying artificial neural network method [J]. Environmental Science & Technology, 2020, 54(15): 9609. [百度学术]
冯雷雨, 袁飞怡, 刘峰, 等. 餐厨垃圾发酵产乳酸研究进展[J]. 同济大学学报(自然科学版), 2021,49(12): 1688. [百度学术]
FENG Leiyu, YUAN Feiyi, LIU Feng, et al. Research progress on lactic acid production from food waste by fermentation[J]. Journal of Tongji University(Natural Science)2021,49(12):1688. [百度学术]
靳晨曦, 孙士强, 盛维杰, 等. 中国厨余垃圾处理技术及资源化方案选择[J]. 中国环境科学, 2022, 42(3): 1240. [百度学术]
JIN Chenxi, SUN Shiqiang, SHENG Weijie, et al. Food waste treatment technology and resource solution options in China[J]. China Environmental Science, 2022,42(3): 1240. [百度学术]
陈科宇,杨哲,李代红,等. 国内外乙酸市场及发展前景分析[J]. 石油化工技术与经济,2023,39(6):10. [百度学术]
CHEN K Y,YANG Z,LI D H,et al. Analysis of acetic acid market and development prospect athome and abroad [J]. Technology & Economy in Petrochemicals, 2023,39(6): 10. [百度学术]
KUMAR A N, MIN B, MOHAN S V. Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format [J]. Bioresource Technology, 2018,269: 408. [百度学术]
张永梅, 王晓昌, 程喆. 温度对餐厨垃圾自由厌氧发酵性能的影响[J]. 环境工程学报,2017(11): 1087. [百度学术]
ZHANG Yongmei,WANG Xiaochang,CHENG Zhe. Effect of temperature on digestion performance in a short-term free anaerobic fermentation from food waste[J]. Chinese Journal of Environmental Engineering,2017(11): 1087. [百度学术]
GOEL T M H,SATOH T M. Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor [J]. Water Research, 1998, 32: 2081. [百度学术]
LI Xiaoling, PENG Yongzhen, REN Nanqi, et al. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)(2) adjustment [J]. Water Research, 2014, 61: 34. [百度学术]
GONZALEZ A, HENDRIKS A, Van LIER J B, et al. Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step[J]. Biotechnology Advances, 2018, 36(5): 1434 [百度学术]
FANG Wei, YANG Yiming, WANG Chen, et al. Enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge by combined sodium citrate and heat pretreatment [J]. Journal of Environmental Chemical Engineering, 2022, 10(6):108518 [百度学术]
魏玉莲, 叶京, 杨玮晴, 等. 热、碱预处理对厨余垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 广东化工, 2021, 48: 183. [百度学术]
WEI Yulian, YE Jing, YANG Weiqing, et al. The effect of thermophilic and alkaline pretreatment on producing volatile fatty acids with anaerobic digestion by kitchen waste[J]. Guangdong Chemical Industry, 2021, 48: 183. [百度学术]
LEE M, HIDAKA T, TSUNO H. Effect of temperature on performance and microbial diversity in hyperthermophilic digester system fed with kitchen garbage [J]. Bioresource Technology, 2008, 99(15): 6852. [百度学术]
WANG K, YIN J, SHEN D, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH [J]. Bioresource Technoglgy, 2014, 161: 395. [百度学术]
张玉静, 蒋建国, 王佳明. pH值对餐厨垃圾厌氧发酵产挥发性脂肪酸的影响[J]. 中国环境科学, 2013, 33: 680. [百度学术]
ZHANG Yujing, JIANG Jianguo, WANG Jiaming. Effect of pH value on VFA concentration and composition during anaerobic fermentation of kitchen waste[J]. China Environmental Science, 2013, 33: 680. [百度学术]
GRZELAK J, ŚLĘZAK R, KRZYSTEK L, et al. Effect of pH on the production of volatile fatty acids in dark fermentation process of organic waste [J]. Ecological Chemistry and Engineering , 2018, 25(2): 295. [百度学术]
YUAN Hongying, CHEN Yinguang, ZHANG Huaxing, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions [J]. Environmental Science Technology, 2006, 40: 2025 [百度学术]
WANG Kun, YIN Jun, SHEN Dongsheng, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH [J]. Bioresource Technology, 2014, 161: 395. [百度学术]
YIN Jun, YU Xiaoqin, ZHANG Yeer, et al. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum [J]. Bioresource Technology, 2016, 216: 996. [百度学术]
LIM Junwei, CHIAM Junan, WANG Jingyuan. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste [J]. Bioresource Technology, 2014, 171: 132. [百度学术]
WANG Ruming, LV Nan, LI Chunxing, et al. Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches [J]. Water Research, 2021, 193: 116896. [百度学术]
JAGADABHI P S, KAPARAJU P, RINTALA J. Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass-silage in one-stage leach-bed reactors [J]. Bioresource Technology, 2010, 101(8): 2818. [百度学术]
桂许维, 罗艺芳, 李振轮, 等. 餐厨垃圾协同剩余污泥发酵产酸的生物过程与影响因素研究进展[J]. 生物工程学报, 2021, 37(2): 448. [百度学术]
GUI Xuwei, LUO Yifang, LI Zhenlun, et al. Co-fermentation of kitchen waste and excess sludge for organic acid production: a review] [J]. Chinese Journal of Biotechnology, 2021, 37(2): 448. [百度学术]
CHANDOLIAS K, PARDAEV S, TAHERZADEH M J. Biohydrogen and carboxylic acids production from wheat straw hydrolysate [J]. Bioresource Technology, 2016, 216: 1093. [百度学术]
SLEZAK R, GRZELAK J, KRZYSTEK L, et al. The effect of initial organic load of the kitchen waste on the production of VFA and H2 in dark fermentation [J]. Waste Management, 2017, 68: 610. [百度学术]
JIA Shuting, DAI Xiaohu, ZHANG Dong, et al. Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition [J]. Water Research, 2013, 47(13): 4576. [百度学术]
王权宫, 蒋建国, 张玉静. NaCl对餐厨垃圾厌氧发酵产VFA浓度及组分的影响[J]. 中国环境科学, 2014, 34: 3127. [百度学术]
WANG Quangong, JIANG Jianguo, ZHANG Yujing,et al. Effect of NaCl content on VFA concentration and composition during anaerobic fermentation of kitchen waste[J]. China Environmental Science, 2014, 34: 3127. [百度学术]
LIU Nuo, WANG Quan, JIANG Jianguo, et al. Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation [J]. Renewable Energy, 2017, 113: 1523. [百度学术]
BORLINGHAUS J, ALBRECHT F, GRUHLKE M C, et al. Allicin: chemistry and biological properties [J]. Molecules, 2014, 19(8): 12591. [百度学术]
TAO Ziletao, YANG Qi, YAO Fubing, et al. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge [J]. Bioresource Technology, 2020, 297: 122428. [百度学术]
LIU Xuran, XU Qiuxiang, WANG Dongbo, et al. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge [J]. Water Research, 2019, 155: 142. [百度学术]
NAYAK J, PAL P. Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process [J]. Industrial & Engineering Chemistry Research, 2013, 52(8): 2977. [百度学术]
CHENG Cheng, ZHOU Zhen, QIU Zhan, et al. Enhancement of sludge reduction by ultrasonic pretreatment and packing carriers in the anaerobic side-stream reactor: Performance, sludge characteristics and microbial community structure [J]. Bioresour Technol, 2018, 249: 298. [百度学术]
CARLSSON L, LAGERKVIST A, MORGAN S F. Energy balance performance of municipal wastewater treatment systems considering sludge anaerobic biodegradability and biogas utilisation routes[J]. Journal of Environmental Chemical Engineering ,2016(4): 4680. [百度学术]
LI Huan, LI Chenchen, LIU Wenjie, et al. Optimized alkaline pretreatment of sludge before anaerobic digestion [J]. Bioresource Technology, 2012, 123: 189. [百度学术]
LUO Kun, PANG Ya, YANG Qi, et al. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications [J]. Environmental [百度学术]
Science and Pollution Research,2019, 26(14): 13984. [百度学术]
DAHIYA S, MOHAN S V. Selective control of volatile fatty acids production from food waste by regulating biosystem buffering: A comprehensive study [J]. Chemical Engineering Journal, 2019, 357: 787. [百度学术]
WANG Yali, WANG Dongbo, LIU Yiwen, et al. Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge [J]. Water Research, 2017, 127: 150. [百度学术]
刘亚利. 剩余污泥强化预处理及其厌氧产酸产甲烷研究[D].哈尔滨:哈尔滨工业大学,2015. [百度学术]
LIU Yali. Study of enhanced pretreatment and anaerobic acidification and methanation of waste activated sludge [D]. Harbin:Harbin Institute of Technology, 2015. [百度学术]
吴云. 热碱预处理和pH协同控制厌氧酸化产物及控制机理分析[J]. 环境工程学报, 2011, 5(6): 1381. [百度学术]
WU Yun. Thermokalite pretreatment and pH coordination control acidification production and mechanism analysis of controlling in anaerobic digestion[J]. Chinese Journal of Environmental Engineering, 2011, 5(6): 1381 [百度学术]
KUMAR AN, Mohan S V. Acidogenesis of waste activated sludge—biohydrogen production withsimultaneous short chain carboxylic acids[J]. Journal of Environmental Chemical Engineering, 2018(6): 2983. [百度学术]
KUMAR AN, Mohan SV. Acidogenic valorization of vegetable waste for short chain carboxylic acids and biohydrogen production: Influence of pretreatment and pH [J]. Journal of Cleaner Production, 2018, 203: 1055. [百度学术]
ZHANG Qin, CAO Jiashun, WU Yang, et al. Shifts of microbial community and metabolic function during food wastes and waste activated sludge co-fermentation in semi-continuous-flow reactors: Effects of fermentation substrate and zero-valent iron [J]. Bioresource Technology, 2020, 313: 123686. [百度学术]
WANG Pingbo, YE Meiying, CUI Yue, et al. Enhancement of enzyme activities and VFA conversion by adding Fe/C in two-phase high-solid digestion of food waste: Performance and microbial community structure [J]. Bioresource Technology, 2021, 331: 125004. [百度学术]
LU Donghui, XING Bo, LIU Yuhan, et al. Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition [J]. Bioresource Technology, 2019, 289: 121713. [百度学术]
JIN Yong, GAO Ming, LI Hongai, et al. Impact of nanoscale zerovalent iron on volatile fatty acid production from food waste: key enzymes and microbial community [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3201. [百度学术]
YANG Guang, XU Chonglin, VARJANI S, et al. Metagenomic insights into improving mechanisms of Fe(0) nanoparticles on volatile fatty acids production from potato peel waste anaerobic fermentation [J]. Bioresource Technology, 2022, 361: 127703. [百度学术]
YADVIKA, SANTOSH, SREEKRISHNAN T R, et al. Enhancement of biogas production from solid substrates using different techniques--a review [J]. Bioresour Technol, 2004, 95(1): 1. [百度学术]
王艳琴, 张洁, 赵晨曦, 等. 金属离子强化餐厨垃圾高温厌氧发酵产酸[J]. 环境工程学报, 2016, 10 (04) : 2051. [百度学术]
WANG Yanqin, ZHANG Jie, ZHAO Chenxi, et al. Enhancement of volatile fatty acid production from anaerobic fermentation of food wastes under thermophilic condition by adding metal ions[J]. Chinese Journal of Environmental Engineering, 2016,10(4):2051. [百度学术]
YOON S S, COAKLEY R, LAU G W, et al. Anaerobic killing of mucoid Pseudomonas aeruginosa by acidified nitrite derivatives under cystic fibrosis airway conditions [J]. The Journal of Clinical Investigation, 2006, 116(2): 436. [百度学术]
ZHAO Jianwei, WANG Dongbo, LI Xiaoming, et al. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge [J]. Water Research, 2015, 78: 111. [百度学术]
CHEN Yinguang, LIU Kun, SU Yinglong, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH [J]. Bioresource Technology, 2013, 140: 97. [百度学术]
YI Xin, LUO Kun, YANG Qi, et al. Enhanced hydrolysis and acidification of waste activated sludge by biosurfactant rhamnolipid [J]. Applied Biochemistry and Biotechnology, 2013, 171(6): 1416. [百度学术]
HUANG Xiangfeng, SHEN Changming, LIU Jia, et al. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants [J]. Chemical Engineering Journal, 2015, 264: 280. [百度学术]
LI Yang, HE Dongwei, NIU Dongjie, et al. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation [J]. Bioprocess and Biosystems Engineering, 2015, 38(5): 863. [百度学术]
KERTES A S, KING C J, BLANCH H W. Extraction chemistry of fermentation product carboxylic acids [J]. Biotechnology and Bioengineering, 2009, 103(3): 431. [百度学术]
AGHAPOUR A S, ZIREHPOUR A, MOLLAHOSSEINI A, et al. Feasibility of membrane processes for the recovery and purification of bio-based volatile fatty acids: A comprehensive review [J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 24. [百度学术]
HASAN U I˙ I˙, BAYAZIT S S. Adsorption equilibrium data for acetic acid and glycolic acid onto amberlite IRA-67 [J]. Journal of Chemical & Engineering Data, 2010, 55: 1295. [百度学术]
Hassan M A,Shirai Y, Umeki H, et al.Acetic acid separation from anaerobically treated palm oil mill effluent by ion exchange resins for the production of polyhydroxyalkanoate by alcaligenes eutrophus. [J]. Biosci Biotech Biochem, 1997, 61(9): 1465. [百度学术]
URIBE S D L, DELGADO D J A, ÁGUEDA M V I, et al. Recovery and purification of acetic acid from aqueous mixtures by simulated moving bed adsorption with methanol and water as desorbents [J]. Separation and Purification Technology, 2020, 237: 116368. [百度学术]
WU Haoran, VALENTINO L, RIGGIO S, et al. Performance characterization of nanofiltration, reverse osmosis, and ion exchange technologies for acetic acid separation [J]. Separation and Purification Technology, 2021, 265: 118108. [百度学术]
ZHANG Huanhuan, WANG Yuming, BAI Peng, et al. Adsorptive separation of acetic acid from dilute aqueous solutions: adsorption kinetic, isotherms, and thermodynamic studies [J]. Journal of Chemical & Engineering Data, 2015, 61(1): 213. [百度学术]
VITASARI C R, MEINDERSMA G W, DE HAAN A B. Glycolaldehyde co-extraction during the reactive extraction of acetic acid with tri-n-octylamine/2-ethyl-1-hexanol from a wood-based pyrolysis oil-derived aqueous phase [J]. Separation and Purification Technology, 2012, 95: 39. [百度学术]
常洪委, 刘冬, 高瑞昶. 填料塔萃取回收醋酸废水的工艺研究[J]. 现代化工, 2013, 33(11): 86. [百度学术]
CHANG Hongwei, LIU Dong, GAO Ruichang. Recovery of acetic acid from waste water by packed extraction column[J]. Modern Chemical Industry, 2013, 33(11): 86. [百度学术]
HARVIANTO G R, KANG K J, LEE M. Process design and optimization of an acetic acid recovery system in terephthalic acid production via hybrid extraction–distillation using a novel mixed solvent [J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2168. [百度学术]
WU Haoran, VALENTINO L, RIGGIO S, et al. Performance characterization of nanofiltration, reverse osmosis, and ion exchange technologies for acetic acid separation [J]. Separation and Purification Technology, 2021, 265: 118108. [百度学术]
AHSAN L, JAHAN M S, NI Y. Recovering/concentrating of hemicellulosic sugars and acetic acid by nanofiltration and reverse osmosis from prehydrolysis liquor of kraft based hardwood dissolving pulp process [J]. Bioresource Technology, 2014, 155: 111. [百度学术]
袁亮续. 乙酸回收技术在PTA装置的应用分析[J]. 聚酯工业, 2021, 34: 28. [百度学术]
YUAN Liangxu. Application analysis of acetic acid recovery technology in PTA Unit[J]. Polyester Industry, 2021, 34: 28. [百度学术]
LI S G, VU A T, RICHARD D N. A Ge-substituted ZSM-5 zeolite membrane for the separation of acetic acid from water [J]. Industrial & Engineering Chemistry Research, 2001, 40(26): 6165. [百度学术]
LEE S C, KIM H C. Batch and continuous separation of acetic acid from succinic acid in a feed solution with high concentrations of carboxylic acids by emulsion liquid membranes [J]. Journal of Membrane Science, 2011, 367(1/2): 190. [百度学术]
ZHANG Yongmei, WANG Xiaochang , CHENG Zhe, et al. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment [J]. Chemosphere, 2016, 144: 689. [百度学术]
唐嘉陵,王晓昌,蒲云辉,等. 餐厨垃圾酸性发酵及其产物为碳源的脱氮特性[J]. 中国环境科学, 2017, 37: 1426. [百度学术]
TANG Jialing, WANG Xiaochang, PU Yunhui, et al. Characteristics of food waste acidogenic fermentation and its products as external carbon sources for nitrogen removal[J]. China Environmental Science, 2017, 37: 1426. [百度学术]
UWINEZA C, MAHBOUBI A, ATMOWIDJOJO A, et al. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure [J]. Bioresource Technology, 2021, 337: 125410. [百度学术]
SENGUN I Y, KARABIYIKLI S. Importance of acetic acid bacteria in food industry [J]. Food Control, 2011, 22(5): 647. [百度学术]
AGNIHOTRI S, YIN D M, MAHBOUBI A, et al. A glimpse of the world of volatile fatty acids production and application: a review [J]. Bioengineered, 2022, 13(1): 1249. [百度学术]
QIU Pengyuan, SUN Haoyang, YANG Yunxin, et al. Molecular insights into the effects of N-doping on synthesis of vinyl acetate over carbon-supported zinc acetate [J]. Catalysis Communications, 2022, 170:106490. [百度学术]
TAI L Y, MUSIVAND S, DE CAPRARIIS B, et al. Co-treatment of plastics with subcritical water for valuable chemical and clean solid fuel production [J]. Journal of Cleaner Production, 2022, 337: 130529. [百度学术]
ŠULGAN B, FURDA P, LABOVSKá Z. Effect of side reactions in hybrid distillation system: Parallel production of ethyl acetate and glycols [J]. Chemical Engineering Journal, 2022, 450: 138154. [百度学术]