摘要
针对纤维增强复合材料(FRP)增强胶合木受弯构件研究进行综述,系统梳理了现有增强技术,详细阐述了界面黏结性能、抗弯性能、蠕变性能的影响因素与分析方法。研究表明:FRP增强技术能更有效地利用胶合木受弯构件中木材的强度,提高构件抗弯承载力、控制弯曲变形并改善脆性破坏模式。针对FRP增强胶合木受弯构件在工程应用上的制约因素,提出了在预应力增强技术、长期性能、抗火性能和可靠性方面研究中亟需解决的关键问题。
木材是一种绿色低碳的生物质材料,木结构建筑装配化程度高、保温性能好,可实现全生命周期的低碳排放和低能耗。随着第十四个五年规划和“双碳”战略的深入推进,我国对绿色建材和低碳建筑的需求剧增,为木结构提供了广阔的应用前景。在现代木结构特别是重木结构中,常采用胶合木作为受弯构件,然而,胶合木的抗弯性能仍受到一些制约:在强度方面,天然缺陷和荷载持续作用效应极大削弱了木材受拉强度,导致受拉侧木材易发生过早的脆性断裂而受压侧木材强度尚未充分发挥;在变形方面,较低的弹性模量和较明显的蠕变会导致木材弯曲变形较大,且木材蠕变对环境温湿度的波动敏感,为构件长期受弯性态评估带来了较大困难。上述问题导致胶合木受弯构件的设计截面增大、可靠性降低、增大了前期材料成本和后期维护成本,制约了大跨度胶合木受弯构件的应用。
近年来随着高性能复合材料的发展,采用纤维增强复合材料(fiber reinforced polymer,FRP)增强受弯木构件成为了改善上述不足的一种有效途径。FRP由高强纤维和树脂基体组成,具有轻质、高强、耐腐蚀等优点,可按常用的玻璃纤维、碳纤维、芳纶纤维和玄武岩纤维分为GFRP(玻璃纤维增强复合材料)、CFRP(碳纤维增强复合材料)、AFRP(芳纶纤维增强复合材料)、BFRP(玄武岩纤增强复合材料)4类。基于FRP的增强方法可有效提高胶合木受弯构件的抗弯承载力、刚度以及延性,并改善其脆性破坏模式,更充分利用木材受压强度。此外,FRP在耐腐蚀性方面的优势可减少维护成本,使其在建筑减碳方面拥有潜在优势。
从20世纪90年代起,FRP增强木结构研究逐渐增多,而工程木的发展又使胶合木受弯构件的FRP增强技术愈发得到重视。本文综述该类构件在增强技术、黏结性能、抗弯性能、蠕变性能等方面的研究成果,并展望需进一步开展的研究工作。
增强胶合木受弯构件中常用的FRP包括筋材(筋、索)和片材(板、纤维布),依据是否对FRP施加预张力可将增强技术分为被动式增强和预应力增强(主动式增强)2类。
被动式增强技术通常将单向纤维编织的FRP粘贴在构件受拉侧,并可按FRP的配置位置分为体外增强和体内增强2类,其截面构造如

图1 被动式FRP增强胶合木受弯构件的截面构造
Fig. 1 Cross-sectional structure of passively FRP-reinforced glulam bending members
在体外增强技术中,片材外粘贴法应用最广泛;筋材则多采用表面嵌入法,施工时需在构件表面开槽,该技术也适用于宽度较窄的FRP板。体外增强技术仅需表面处理,因其施工便利而常用于结构修复或补强,不足的是美观性较差,且会将黏结界面暴露在外界环境下,导致界面存在耐久性较低的隐患。
体内增强技术的发展得益于胶合木构件的层板式构造,加工时木层板的处理往往先于木层板胶合进行,从而将FRP嵌于构件内部。对于片材,通常将FRP横向嵌入层板间,也可将片材竖向嵌入小层板后再与其他层板胶
由于FRP的原材料与产品形式较丰富,因此实际研究中并不局限于上述技术,如可同时在受拉侧和受压
预应力FRP增强技术的关键在于锚固系统与张拉工艺。FRP通常依靠胶黏剂或锚具锚固于木构件中,然而在较大的预张力作用下,FRP与木材间黏结锚固的耐久性尚待研究。同时,FRP的剪切强度、横向拉伸强度仅为纵向抗拉强度的5%~20
现有张拉工艺包括先张法、后张法和预弯法。基于先张法的研究较多,大多是在张拉FRP片材后粘贴于外表面;受限于锚具和夹具,基于后张法的研究较少;预弯法通过预弯构件、黏贴FRP、最后释放预弯荷
FRP在长期高应力下会发生蠕变断裂,中国规范GB 50068—2020、美国规范ACI 440.4R-04等规定了FRP的蠕变断裂折减系数和张拉控制应力比限值,该限值通常不大于0.65,且由于GFRP蠕变断裂应力过低,不建议作为预应力筋。
良好的界面黏结性能是FRP与木材协同抗弯的必要保障,常用节点试件形式如

图2 FRP-木黏结节点的试件类型
Fig. 2 Specimen types of FRP-timber bond joints
界面黏结性能常关注几类指标:黏结剪应力、黏结承载力、破坏模式、有效黏结长度和黏结剪应力-滑移曲线。如

图3 FRP-木界面的常用黏结性能指标
Fig. 3 Regular bond performance indices of FRP-timber interface
在几何参数中,黏结长度对黏结性能有显著影响。当小于有效黏结长度时,增加黏结长度可提高界面承载力、减小滑移、改善非木材区破坏,但大于有效黏结长度时,增加黏结长度对黏结性能无显著提
在材料性质方面,由于木材强度通常低于FRP或胶黏剂,破坏常发生在木材或胶-木界面,故木材强度对黏结强度、有效黏结长度有影响,进而影响破坏模
在环境方面,高温、高湿或紫外线会引起材料退化,可能导致黏结强度下
黏结节点涉及3种材料和2种材料界面,其影响参数与性能指标较多,影响关系较复杂,除上述参数,试件形式、加载方式、边界条件、材料的表面情
为避免受弯木构件发生黏结破坏,需探明界面黏结剪应力的整体分布情况。杨会峰
一些改进措施被用于改善界面性能,如Kramár
综上所述,对于FRP增强受弯木构件,需结合节点试验的成果探明黏结强度,分析黏结应力分布,从而进行合理设计。当胶体无法提供足够的黏结力时,应采取加固措施。
FRP增强胶合木受弯构件的弯曲破坏以木材受拉断裂破坏或受压延性破坏为主,同时伴随一些剪切裂缝,而FRP断裂和脱胶需在设计时予以避免。针对发生木材弯曲破坏的构件,综述其增强机理与影响因素。
FRP对受弯木构件的抗弯增强机理可归纳如下:一方面,FRP的弹性模量远大于木材,使木构件的换算截面增大、中和轴下移,从而较充分利用受压侧木材的强度、推迟受拉侧木材开裂,但由于FRP通常是一种线弹性材料,构件的延性变形主要得益于木材受压屈服;另一方面,FRP改善了缺陷对受拉侧木材的不利影响,提高了木材抗拉性能。文献[
配筋率对抗弯性能有重要影响。随着配筋率的增加,构件的抗弯承载力、刚度、极限挠度均提高,破坏模式从木材受拉断裂的脆性破坏过渡到木材受压屈曲的延性破坏。Plevris
FRP的配置位置可能存在影响。对于体外增强方法,Gómez
FRP的弹性模量可能对抗弯性能存在影响。试验表
在FRP产品形式上,Rescalvo
利用FRP增强基于速生树种的胶合木构件有望进一步提高经济效益。Lu
增强胶合木构件的抗弯分析方法已发展得较充分,如

图4 被动式FRP增强木构件抗弯性能理论模型
Fig. 4 Theoretical model for the bending performance of passively FRP-reinforced timber members
综上所述,国内针对被动式增强胶合木受弯构件开展了大量研究,取得较为丰硕成果,但鉴于增强技术、材料类型、FRP产品的多样性,研究仍有较大的开展空间。在理论分析方面,现有研究不断优化传统模型,完善对各类力学效应的考量,故需总结设计方法并建立相关标准,为工程建设提供理论基础。
被动式增强技术存在一些不足:① FRP强度利用不充分,工作应力仅为抗拉强度的20%~50
预应力水平是影响预应力构件抗弯性能的重要因素。Triantafillou
预应力FRP增强技术在变形控制上的优势主要归功于预拱。Yang
当预应力FRP置于体内或近体表时,构件的木材换算截面未显著增大,故抗弯刚度提升并不显
预应力构件开展理论分析时需区分黏结方式。现有研究主要关注有黏结构件,由于FRP和木材可协同变形,在准确掌握施加预张力对构件应力分布的影响这一基础上,被动式增强构件的截面分析方法已可较好预测预应力构件的承载力和刚
综上所述,国内外针对预应力FRP增强胶合木受弯构件的抗弯性能开展了一些研究,验证了预应力增强技术的优势,但尚需针对不同的增强技术和影响参数开展大量试验,以阐明构件增强机理以及各类参数的影响规律,并进一步完善设计理论,以准确预测构件的抗弯性能。
现有蠕变研究主要针对被动式增强构件,通常基于长期弯曲试验的监测结果,校核理论模型或数值模型、评估构件在设计使用年限内的蠕变发展。
在结合了理论分析的研究中,王卓琳
在结合了数值分析的研究中,Yahyaei-Moayyed
有关预应力FRP增强构件蠕变性能的研究鲜有报道,仅有Yahyaei-Moayyed
综上所述,针对被动式FRP增强胶合木受弯构件的蠕变性能,国内外已开展了一些试验,发现FRP可有效控制构件的蠕变挠度和蠕变应变,并约束温湿度波动引起的木材环境应变,且现有分析模型已发展得较为完善,可实现对多物理场作用下的长期变形和材料应变的准确预测,后续研究应进一步完善现有模型,以此开展更全面的参数分析;针对预应力FRP增强胶合木受弯构件,则亟需开展相关试验研究。此外,在长期高应力水平作用下,FRP的强度和锚固效果将发生退化、木材的荷载持续作用效应将加剧,因此预应力构件的长期承载力退化也是一个待研究的关键问题。
综述了FRP增强胶合木受弯构件在增强技术、界面黏结性能、抗弯性能、蠕变性能4个方面的研究进展。现有研究证明了FRP在增强胶合木受弯构件性能上的优势,采用适当的FRP增强技术并保证良好的黏结性能,将有效提高胶合木受弯构件的抗弯承载力和抗弯刚度、改善木材脆性破坏模式、充分利用材料强度、控制长期变形。FRP增强胶合木受弯构件将有助于推动现代木结构向更大跨度发展,但其工程应用仍受许多问题的制约,故对未来研究侧重点提出以下建议:
(1)预应力增强技术。预应力增强在材料利用、变形控制乃至木材受拉损伤控制方面有较大优势,应加强对FRP的预应力增强技术特别是锚固系统和张拉工艺的研发,并推动相关研究成果的商品化。
(2)长期性能。木结构的长期性能是学界长期关注的研究重点,而木材、FRP、胶黏剂等材料的力学性能表现出明显的长期特性,需结合材料的长期性能研究,明确荷载及各类环境长期作用下各材料的协同抗弯机理,揭示构件的蠕变变形和性能退化规律。
(3)抗火性能。FRP、胶黏剂在高温下会发生性能退化,而FRP与木材这一可燃材料的结合,将使防火性能成为制约工程应用的突出问题,因此需对FRP-木黏结界面开展火灾试验,并开发相关防火技术。
(4)可靠性。FRP的诞生时间尚短,对其耐久性的研究尚待完善,这使得FRP增强构件的安全服役能力成为设计人员的重点关注问题,需基于前述各项性能的研究结果开展可靠性分析,为FRP增强胶合木受弯构件在服役期内的可靠运维提供科学依据。
作者贡献声明
何敏娟:论文选题、指导、修改和项目资助。
王毓萱:论文撰写、文献收集与整理。
李 征:论文指导、修改。
参考文献
LU W, LING Z, GENG Q, et al. Study on flexural behaviour of glulam beams reinforced by Near Surface Mounted (NSM) CFRP laminates[J]. Construction and Building Materials, 2015, 91: 23. DOI: 10.1016/j.conbuildmat.2015.04.050. [百度学术]
YANG H, LIU W, LU W, et al. Flexural behavior of FRP and steel reinforced glulam beams: experimental and theoretical evaluation[J]. Construction and Building Materials, 2016, 106: 550. DOI: 10.1016/j.conbuildmat.2015.12.135. [百度学术]
SHI H, LIU W, FANG H, et al. Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams[J]. Composites Part B: Engineering, 2017, 108: 364. DOI: 10.1016/j.compositesb.2016.10.009. [百度学术]
叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24. [百度学术]
YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24. [百度学术]
王锋, 王增春, 何艳丽, 等. 预应力纤维材料加固木梁研究[J]. 空间结构, 2005, 11(2): 34. DOI: 10.3969/j.issn.1006-6578.2005.02.005. [百度学术]
WANG Feng, WANG Zengchun, HE Yanli, et al. Research of prestressed FRP in the reinforcement of timber beams[J]. Spatial Structures, 2005, 11(2): 34. DOI: 10.3969/j.issn.1006-6578.2005.02.005. [百度学术]
YANG H, JU D, LIU W, et al. Prestressed glulam beams reinforced with CFRP bars[J]. Construction and Building Materials, 2016, 109: 73. DOI: 10.1016/j.conbuildmat.2016.02.008. [百度学术]
LING Z, YANG H, LIU W, et al. Local bond stress-slip relationships between glue laminated timber and epoxy bonded-in GFRP rod[J]. Construction and Building Materials, 2018, 170: 1. DOI: 10.1016/j.conbuildmat.2018.03.052. [百度学术]
VAHEDIAN A, SHRESTHA R, CREWS K. Effective bond length and bond behaviour of FRP externally bonded to timber[J]. Construction and Building Materials, 2017, 151: 742. DOI: 10.1016/j.conbuildmat.2017.06.149. [百度学术]
LIU S, LEI Y, ZHANG J, et al. Experimental study and analysis on bonding strength of CFRP-wood interface[J]. International Journal of Adhesion and Adhesives, 2023. 123: 103335. DOI: 10.1016/j.ijadhadh.2023.103335. [百度学术]
WAN J, SMITH S T, QIAO P, et al. Experimental investigation on FRP-to-timber bonded interfaces[J]. Journal of Composites for Construction, 2014, 18(3): A4013006. DOI: 10.1061/(ASCE)CC.1943-5614.0000418. [百度学术]
ZHU H, FAGHANI P, TANNERT T. Experimental investigations on timber joints with single glued-in FRP rods[J]. Construction and Building Materials, 2017, 140: 167. DOI: 10.1016/j.conbuildmat.2017.02.091. [百度学术]
SENA-CRUZ J, BRANCO J, JORGE M, et al. Bond behavior between glulam and GFRP’s by pullout tests[J]. Composites Part B: Engineering, 2012, 43(3): 1045. DOI: 10.1016/j.compositesb.2011.10.022. [百度学术]
VAHEDIAN A, SHRESTHA R, CREWS K. Bond strength model for externally bonded FRP-to-timber interface[J]. Composite Structures, 2018, 200: 328. DOI: 10.1016/j.compstruct.2018.05.152. [百度学术]
BISCAIA H C, CRUZ D, CHASTRE C. Analysis of the debonding process of CFRP-to-timber interfaces[J]. Construction and Building Materials, 2016, 113: 96. DOI: 10.1016/j.conbuildmat.2016.03.033. [百度学术]
HUANG S, YAN L, BACHTIAR E V, et al. Durability of epoxy and polyurethane bonded timber-hybrid FRP joints under hydrothermal and weathering conditions[J]. Journal of Building Engineering, 2022, 58: 104989. DOI: 10.1016/j.jobe.2022.104989. [百度学术]
ZHOU A, QIN R, CHOW C L, et al. Bond integrity of aramid, basalt and carbon fiber reinforced polymer bonded wood composites at elevated temperature[J]. Composite Structures, 2020, 245: 112342. DOI: 10.1016/j.compstruct.2020.112342. [百度学术]
YARIGARRAVESH M, TOUFIGH V, MOFID M. Environmental effects on the bond at the interface between FRP and wood[J]. European Journal of Wood and Wood Products, 2018, 76(1): 163. DOI: 10.1007/s00107-017-1201-z. [百度学术]
杨会峰, 刘伟庆. FRP增强胶合木梁的黏结剪应力分析[J]. 江苏大学学报(自然科学版), 2007, 28(1): 72. [百度学术]
YANG Huifeng, LIU Weiqing. Study on bond shear stress of FRP reinforced glued laminated timber beams[J]. Journal of Jiangsu University (Natural Science Edition), 2007, 28(1): 72. [百度学术]
VAHEDIAN A, SHRESTHA R, CREWS K. Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: full-scale experiments[J]. Composites Part B: Engineering, 2019, 164: 377. DOI: 10.1016/j.compositesb.2018.12.007. [百度学术]
KRAMÁR S, BRABEC M, PAŘIL P, et al. Constraining delamination of CFRP by beam corrugation[J]. Engineering Structures, 2020, 207: 110237. DOI: 10.1016/j.engstruct.2020.110237. [百度学术]
İŞLEYEN Ü K, GHOROUBI R, MERCIMEK Ö, et al. Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading[J]. Journal of Reinforced Plastics and Composites, 2021, 40(17/18): 665. DOI: 10.1177/0731684421997924. [百度学术]
TRIANTAFILLOU T C, DESKOVIC N. Prestressed FRP sheets as external reinforcement of wood members[J]. Journal of Structural Engineering, 1992, 118(5): 1270. DOI: 10.1061/(Asce)0733-9445(1992)118:5(1270). [百度学术]
HALICKA A, ŚLÓSARZ S. Strengthening of timber beams with pretensioned CFRP strips[J]. Structures, 2021, 34: 2912. DOI: 10.1016/j.istruc.2021.09.055. [百度学术]
HE M, WANG Y, LI Z, et al. An experimental and analytical study on the bending performance of CFRP-reinforced glulam beams[J]. Frontiers in Materials, 2022, 8: 802249. DOI: 10.1016/j.conbuildmat.2016.02.008. [百度学术]
YEBOAH D, GKANTOU M. Investigation of flexural behaviour of structural timber beams strengthened with NSM basalt and glass FRP bars[J]. Structures, 2021, 33: 390. DOI: 10.1016/j.istruc.2021.04.044. [百度学术]
PLEVRIS N, TRIANTAFILLOU T C. FRP-reinforced wood as structural material[J]. Journal of materials in Civil Engineering, 1992, 4(3): 300. DOI: 10.1061/(ASCE)0899-1561(1992)4:3(300). [百度学术]
杨会峰, 刘伟庆. FRP增强胶合木梁的受弯性能研究[J]. 建筑结构学报, 2007, 28(1): 64. DOI: 10.14006/j.jzjgxb.2007.01.010. [百度学术]
YANG Huifeng, LIU Weiqing. Study on flexural behavior of FRP reinforced glulam beams[J]. Journal of Building Structures, 2007, 28(1): 64. DOI: 10.14006/j.jzjgxb.2007.01.010. [百度学术]
GÓMEZ E P, GONZÁLEZ M N, HOSOKAWA K, et al. Experimental study of the flexural behavior of timber beams reinforced with different kinds of FRP and metallic fibers[J]. Composite Structures, 2019, 213: 308. DOI: 10.1016/j.compstruct.2019.01.099. [百度学术]
RAFTERY G M, RODD P D. FRP reinforcement of low-grade glulam timber bonded with wood adhesive[J]. Construction and Building Materials, 2015, 91: 116. DOI: 10.1016/j.conbuildmat.2015.05.026. [百度学术]
RESCALVO F J, TIMBOLMAS C, BRAVO R, et al. Improving ductility and bending features of poplar glued laminated beams by means of embedded carbon material[J]. Construction and Building Materials, 2021, 304: 124469. DOI: 10.1016/j.conbuildmat.2021.124469. [百度学术]
FOSSETTI M, MINAFÒ G, PAPIA M. Flexural behaviour of glulam timber beams reinforced with FRP cords[J]. Construction and Building Materials, 2015, 95: 54. DOI: 10.1016/j.conbuildmat.2015.07.116. [百度学术]
BUCHANAN A H. Bending strength of lumber[J]. Journal of Structural Engineering, 1990, 116(5): 1213. DOI: 10.1061/(ASCE)0733-9445(1990)116:5(1213) [百度学术]
LINDYBERG R F, DAGHER H J. ReLAM: Nonlinear probabilistic model for the analysis of reinforced glulam beams in bending[J]. Journal of Structural Engineering, 2012, 138(6): 777. DOI: 10.1061/(ASCE)ST.1943-541X.0000496. [百度学术]
BLANK L, FRANGI A. Design model for the bending resistance of fibre reinforced glulam[J]. Engineering Structures, 2020, 211: 110385. DOI: 10.1016/j.engstruct.2020.110385. [百度学术]
陈暑冰, 申士杰, 范诒杰, 等. 不同预应力CFRP增强结构用集成材抗弯性能研究[J]. 林产工业, 2017, 44(9): 13. DOI: 10.19531/j.issn1001-5299.201709003. [百度学术]
CHEN Shubing, SHEN Shijie, FAN Yijie, et al. Research on the flexural performance of the structural glued laminated timber reinforced with different prestressed CFRP[J]. China Forest Products Industry, 2017, 44(9): 13. DOI: 10.19531/j.issn1001-5299.201709003. [百度学术]
郑玉槟, 刘问, 申士杰, 等. 预应力FRP增强胶合木的预应力损失研究[J]. 世界地震工程, 2019, 35(3): 99. [百度学术]
ZHENG Yubin, LIU Wen, SHEN Shijie, et al. Prestress loss of prestressed glulam beam reinforced with FRP[J]. World Earthquake Engineering, 2019, 35(3): 99. [百度学术]
THORHALLSSON E R, HINRIKSSON G I, SNÆBJÖRNSSON J T. Strength and stiffness of glulam beams reinforced with glass and basalt fibres[J]. Composites Part B: Engineering, 2017 115: 300. DOI: 10.1016/j.compositesb.2016.09.074. [百度学术]
WDOWIAK-POSTULAK A. Numerical, theoretical and experimental models of the static performance of timber beams reinforced with steel, basalt and glass pre-stressed bars[J]. Composite Structures, 2023, 305: 116479. DOI: 10.1016/j.compstruct.2022.116479. [百度学术]
MCCONNELL E, MCPOLIN D, TAYLOR S. Post-tensioning glulam timber beams with basalt FRP tendons[J]. Proceedings of the Institution of Civil Engineers-Construction Materials, 2015, 168(5): 232. DOI: 10.1680/jcoma.14.00032 [百度学术]
王卓琳, 刘伟庆, 许清风, 等. 内嵌CFRP筋加固木梁持荷6年受力性能的试验研究[J]. 建筑结构, 2020, 50(5): 15. DOI: 10.19701/j.jzjg.2020.05.003. [百度学术]
WANG Zhuolin, LIU Weiqing, XU Qingfeng, et al. Experimental study on mechanical behavior of timber beams reinforced by near-surface mounted CFRP reinforcement under 6-year sustained loading[J]. Building Structure, 2020, 50(5): 15. DOI: 10.19701/j.jzjg.2020.05.003. [百度学术]
PLEVRIS N, TRIANTAFILLOU T C. Creep behavior of FRP-reinforced wood members[J]. Journal of Structural Engineering, 1995, 121(2): 174. DOI: 10.1061/(ASCE)0733-9445(1996)122:8(981.x). [百度学术]
LI L, XIAO Y. Creep behavior of glubam and CFRP-enhanced glubam beams[J]. Journal of Composites for Construction, 2016, 20(1): 04015028. DOI: 10.1061/(ASCE)CC.1943-5614.0000585. [百度学术]
DAVIDS W G, DAGHER H J, BRETON J M. Modeling creep deformations of FRP-reinforced glulam beams[J]. Wood and Fiber Science, 2000, 32(4): 426. [百度学术]
YAHYAEI-MOAYYED M, TAHERI F. Experimental and computational investigations into creep response of AFRP reinforced timber beams[J]. Composite Structures, 2011, 93(2): 616. DOI: 10.1016/j.compstruct.2010.08.017. [百度学术]
O'CEALLAIGH C, SIKORA K, MCPOLIN D, et al. An investigation of the viscoelastic creep behaviour of basalt fibre reinforced timber elements[J]. Construction and Building Materials, 2018, 187: 220. DOI: 10.1016/j.conbuildmat.2018.07.193. [百度学术]
O'CEALLAIGH C, SIKORA K, MCPOLIN D, et al. The mechano-sorptive creep behaviour of basalt FRP reinforced timber elements in a variable climate[J]. Engineering Structures, 2019, 200: 109702. DOI: 10.1016/j.engstruct.2019.109702. [百度学术]
O'CEALLAIGH C, SIKORA K, MCPOLIN D, et al. Modelling the hygro-mechanical creep behaviour of FRP reinforced timber elements[J]. Construction and Building Materials, 2020, 259: 119899. DOI: 10.1016/j.conbuildmat.2020.119899. [百度学术]
马晨晨. 温湿度与荷载耦合作用下BFRP加固木梁蠕变性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [百度学术]
MA Chenchen. Research on the creep performance of BFRP strengthened timber beams under the effect of load temperature and humidity[D]. Harbin: Harbin Institute of Technology, 2019. [百度学术]
YAHYAEI-MOAYYED M, TAHERI F. Creep response of glued-laminated beam reinforced with pre-stressed sub-laminated composite[J]. Construction and Building Materials, 2011, 25(5): 2495. DOI: 10.1016/j.conbuildmat.2010.11.078. [百度学术]
DAVIES M, FRAGIACOMO M. Long-term behavior of prestressed LVL members. I: experimental tests[J]. Journal of Structural Engineering, 2011, 137(12): 1553. DOI: 10.1061/(Asce)St.1943-541x.0000405. [百度学术]
FRAGIACOMO M, DAVIES M. Long-term behavior of prestressed LVL members. II: Analytical approach[J]. Journal of Structural Engineering, 2011, 137(12): 1562. DOI: 10.1061/(Asce)St.1943-541x.0000410. [百度学术]
GRANELLO G, GIORGIN S, PALERMO A, et al. Finch R. Long-term behavior of LVL posttensioned timber beams[J]. Journal of Structural Engineering, 2017, 143(12): 04017158. DOI: 10.1061/(Asce)St.1943-541x.0001907. [百度学术]
GUO N, XIONG H, WU M, et al. Long-term bending behaviour of prestressed glulam bamboo-wood beam based on creep effect[J]. Structural Durability & Health Monitoring, 2020, 14(3): 229. DOI: 10.32604/sdhm.2020.09104. [百度学术]