摘要
对考虑大气腐蚀影响的钢结构剩余抗震性能的现有研究进行综述,首先探讨了钢在大气环境下腐蚀程度随时间的变化规律,其次从材料、构件、结构体系3个层次梳理了腐蚀对钢结构抗震性能影响的研究现状,最后针对该领域当前研究的不足进行了详细评述。该领域下一步重点研究方向应包括腐蚀预测新方法、考虑蚀坑分布随机性的建模方法、焊缝腐蚀与焊缝超低周疲劳的交叉学科研究、适合腐蚀结构地震易损性分析的高效建模方法。
钢结构具有重量轻、延性好、便于加工和安装等优点,所以广泛应用于抗震设计中。2001年,建设部发布了《钢结构住宅产业化技术导则
虽然钢结构在延性等方面具有混凝土结构、木结构等无法比拟的优势,但钢结构也存在一个严重的问题——腐蚀。据统计,与腐蚀相关的耗费约占全球GDP的3.4
需要注意的是,含腐蚀损伤的钢结构可能位于震区,而由于地震是一个循环加载的过程,所以与连续倒塌相比,腐蚀对钢结构抗震性能的影响可能会更严重,有研究表明:小于2%的腐蚀质量损失可造成钢材失效循环次数降低22%,而3%的腐蚀质量损失可造成失效循环次数降低47
腐蚀程度随时间的变化函数称为腐蚀模型,腐蚀程度可用腐蚀造成的构件厚度损失、体积损失或重量损失来表示。目前一般通过加速腐蚀的方法来进行结构剩余强度试验,其中建立加速腐蚀与实际大气环境腐蚀的合理对应关系是准确评估结构耐久性和使用寿命的关键。因此,首先探讨腐蚀模型的研究现状。
1974年,Bohnenkamp
(1) |
式中:C为t年后的腐蚀量;A为1年暴露后的腐蚀量;n为指数,通常小于1。
两边取对数,得其线性形式为
(2) |
1992年李牧铮和张
(3) |
对于耐候钢,其回归方程为
(4) |
其中,Dloss为腐蚀深度。
萧以德
大气环境类型 | A/(g· | n |
---|---|---|
农村 | 10.5~247.4 | 0.301~0.761 |
工业城市 | 196.2~692.1 | 0.292~0.528 |
海洋 | 200.4~931.4 | 0.369~0.685 |
工业城市-海洋 | 270.4~796.0 | 0.335~0.613 |
尽管幂函数模型能大致描述腐蚀量随时间变化的一般趋势,但其常数A和n也受各种环境因素和材料自身特性的影响。所以,针对具体的腐蚀案例,学者们提出了一些细化或修正的幂函数模型。例如,Feliu
(5) |
式中:PCl为氯污染年度均值;T为气温年度均值;D为每年降雨天数;R为多变量相关系数;MAQ为海洋大气质量;tw为年度湿润时间。而李牧铮
(6) |
式中:Ksteel为钢的腐蚀量与腐蚀电量的比例系数;Q1为腐蚀电量,其为相对湿度、大气中SO2含量、氯离子含量、NO2含量、大气沉降物中水溶性降尘量、大气湿度、雨水PH值、不同湿润区间累积时间、降雨时间以及凝露时间的函数。1995年汪轩义
(7) |
式中:N为湿润因子、侵蚀因子与雨水酸度因子之和。2006年萧以德
文献[
(8) |
式中:C为t年后的腐蚀损失量;C1为第1年的腐蚀损失量;tp为前一暴露周期的时间长度(以年为单位),其斜率为n1;n2为第2个周期的斜率。这种奇异行为的一个可能原因可能是随着时间的推移形成了更紧密的锈层,这阻碍了参与腐蚀反应的活性物质的扩散。

图 1 不完全满足幂函数模型(C=A
Fig. 1 Double logarithmic curve of corrosion exposure time for weathering steel not fully satisfing the power function mode
McCuen
McCuen
根据ISO 922
通常材性试验的目的是为构件及结构体系仿真提供材性数据。对于腐蚀的构件或体系,在仿真中模拟真实的蚀坑分布由于需要巨大的工作量,所以基本是无法实现的。为此,学者们提出了一种“名义力学性能法
时间 | 文献 | 力学性能回归模型 | 参数描述 |
---|---|---|---|
1989年、2004年 |
[ | Fu=WTma fu | Fu为极限承载力,W为板宽,Tma为最小横截面的平均厚度,fu为钢材腐蚀前的抗拉强度 |
2010年 |
[ | δ'为钢材腐蚀后的伸长率,为钢材腐蚀后的屈服强度,为钢材腐蚀后的抗拉强度,η为钢的腐蚀率。 | |
2012年 |
[ | fy、分别为钢材腐蚀前、后的屈服强度,fu、分别为钢材腐蚀前、后的抗拉强度,δ、δ'分别为钢材腐蚀前、后的伸长率,Dw为质量损失率。 | |
2014年 |
[ | Fu为极限承载力,Fy为屈服承载力,W为板宽,ρ为体积损失比,t0为腐蚀前厚度。 | |
2015年 |
[ | Es、分别为钢材腐蚀前、后的弹性模量,Dw为质量损失率。 | |
2016年 |
[ | fy、分别为钢材腐蚀前、后的屈服强度,fu、分别为钢材腐蚀前、后的抗拉强度,δ、δ'分别为钢材腐蚀前、后的伸长率,Dw为质量损失率。 | |
2020年 |
[ | 为钢材腐蚀后的抗拉强度,ρ为体积损失比,δ'为钢材腐蚀后的伸长率。 | |
2020年 |
[ | 为钢材腐蚀后的伸长率,x为最大腐蚀深度除以平均腐蚀深度,为钢材腐蚀后的弹性模量。 |
注: 本文只关注全钢结构,对混凝土结构中钢筋的力学性能不做总结。
随着研究的深入,学者们逐渐意识到仅使用质量损失、体积损失或厚度损失等简单指标来描述腐蚀板材的剩余力学性能可能并不精确,于是开始致力于开发评价腐蚀试件的更复杂指标。
Kaita
(9) |
(10) |
式中:Fy为屈服荷载;σy为材料屈服强度;b为板宽;teff为提出的“有效厚度”;tavg_min为平均最小厚度;Fu为极限荷载;σu为材料抗拉强度;t0为板材腐蚀前的初始厚度;σst为蚀坑分布标准差。2016年Xu
(11) |
式中:Vcorroded为腐蚀试件的总体积;t0为板材腐蚀前的初始厚度;A为横截面面积。总之,学者们提出了一系列指标来评价腐蚀平板的剩余拉伸性能,如“有效厚度”、腐蚀造成的重量损失、腐蚀后的最小横截面面积、最大表面粗糙度、DoD等,但都没有充分揭示腐蚀造成平板力学性能降低的机理,为解决这一问题,文献[
通过文献综述可以发现,腐蚀平板剩余强度领域研究的不足或未来的发展趋势主要有以下几个方面:一是在有限元建模方法方面,该领域的研究重点正在从简单的规则分布蚀坑向如何使用蚀坑的形貌扫描数据直接生成有限元模型,从而更真实地反映蚀坑分布转变。二是传统的研究大多聚焦于提出评价腐蚀平板剩余力学性能的经验计算公式,而缺少腐蚀造成钢板剩余强度降低的机理性研究。三是由于腐蚀后的试件不再是标准拉伸试件,所以用腐蚀后的试件来计算钢板的材性是不准确的。
由于地震载荷是交变载荷,所以在对试件进行单调加载的基础上还需研究其滞回响应和低周疲劳性能。2013年,Appuhamy
(12) |
式中:eEDr为能耗减小百分比;μ为钢板最小剩余厚度与初始厚度之比。2019年Jia
(13) |
式中:;Tmax为通过厚度测量得到的腐蚀平板最大剩余厚度。可见,该模型的一大进步在于同时考虑了腐蚀厚度和体积的影响。张岳林
由于钢结构通常通过焊接进行连接,而焊接接头通常位于几何突变位置,极易遭受震损威胁,所以只研究母材自身的腐蚀后力学行为是远远不够的,必须关注焊缝的腐蚀。而且,实践表明焊接接头往往比母材更容易发生腐蚀。

图 3 焊接区域优先腐蚀案例
Fig. 3 Cases of preferential corrosion in welded zones
焊接接头优先腐蚀的原因主要有两点:首先,由于焊缝形状的不平整,焊缝区域防腐保护层的质量不如母材区域高。其次,焊缝经常位于应力集中位置,当结构遭受荷载(如风致、交通致震动)时,即使焊缝金属未进入塑性变形状态,其相应的涂层也有脱落的风险,由于涂料的延性往往不如金属高(
2015年马宏驰
通过文献综述可以发现,在多种环境中已观察到焊接区域的优先腐蚀。通常,影响焊缝腐蚀的因素主要分为3类:一类是材料自身的属性,如材料的微观组织和不同区域的电势。一类是焊接工艺参数,如焊接电流、电压、坡口形式、预热、后热温度、周边环境温度、湿度,甚至是焊接现场风速。一类是腐蚀环境特点,显然相同的焊接接头在一般大气环境、工业大气环境、海洋大气环境中的腐蚀特点是不尽相同的。如此众多的影响因素使焊缝腐蚀的研究极其复杂,很难得出具有普遍适用性的结论。针对某种特定的场景,仍需进行新的深入研究。
在探讨腐蚀焊缝的抗震性能之前,需要对焊缝自身的循环塑性及超低周疲劳行为进行研究。对于结构钢焊接接头的低周疲劳行为,Shi
尽管学者们已经逐渐意识到焊接接头循环塑性及超低周疲劳行为研究的重要性,但该领域的研究仍然存在以下几个方面的问题:一是与母材相比,焊接接头的研究仍然只处于起步阶段,对于母材,已经有了很多共识性的结论,如在滞回加载下,低屈服点钢容易表现出循环软化,碳钢及低合金钢容易表现出循环稳定,而不锈钢容易表现出循环硬化。然而,焊接接头尚无此类普适性结论。其次,焊接接头加工过程中涉及到各种影响因素,如焊接方法和焊材类型,这些因素如何影响焊接接头的力学性能需要进行进一步研究。第三,评价焊接接头滞回行为的指标仍然不足,例如,现有规范中一般只对焊接接头的强度、硬度、冲击韧性等基本指标进行规定,而很少考虑耗能能力、失效循环次数等反映抗震性能的指标。第四,由于焊缝区域材料的高度非线性,其有限元(finite element, FE)建模非常复杂,因此仍然缺乏对焊接接头滞回性能的数值分析。
总之,焊缝腐蚀特点和焊接接头滞回性能属于2个不同的研究领域,前者属于材料学科研究范畴,后者属于地震工程学研究范畴,虽然学者们在2个领域均进行了广泛研究,但鲜有研究将两者结合起来。2个领域的交叉学科研究应作为下一步的重要研究方向。
在构件层面,学者们进行了试验和有限元分析,以表征腐蚀钢构件的承载力和变形能力的退化。郑山锁
Wang
从试验角度来讲,腐蚀构件抗震性能的拟静力试验方法与不腐蚀构件并无明显区别,但需要指出的是,当前的腐蚀梁柱试验往往是将柱端固定在台座或反力架上,这相当于认为柱端的边界条件是固支,但在实际的地震响应下,柱中心截面处于反弯点位置,所以在以后的试验中需对此进行改进,如通过应用球铰等手段模拟柱端的转动。从仿真角度来讲,目前在仿真中很少考虑焊接残余应力或初挠度等初始缺陷,这或许会使计算精度有一定的损失。但更重要的问题存在于“名义力学性能法”的机理缺陷,虽然这种方法具有极强的可操作性,但该方法由于无法考虑局部蚀坑的影响,所以若实际破坏发生在局部蚀坑处,则仿真结果由于未考虑局部腐蚀而可能会产生致命性误差。下一步的工作应重点考虑开发考虑蚀坑分布随机性的腐蚀构件简化几何建模方法。
传统的腐蚀结构抗震性能研究对象多为钢筋混凝土结
由于结构体系层次的试验需要投入大量的人力、物力、财力,所以目前的研究相当匮乏,仅见郑山锁教授团队进行了上述几项研究。出于经济性考虑,今后的一个研究思路是在材料和构件层次对有限元建模方法进行验证,再将验证好的建模方法用于结构体系层次的分析,从而节省结构体系试验。在具体的有限元建模技术方面,目前大多采用精细化建模,这显然要付出很大的计算代价,尤其是进行易损性分析时需要进行大量的计算,下一步应重点关注如何简化模型,如使用Opensees等体系分析程序进行建模。另外,与构件建模类似,在结构体系中应考虑蚀坑分布随机性的影响。
(1)我国材料自然环境腐蚀试验始于20世纪50年代
(2)对于材料层面,继续研究腐蚀母材的剩余力学性能已不再具有重大意义,这一方面是由于该方向的研究已日渐成熟,另一方面是由于腐蚀和断裂往往优先发生在焊接接头,而非母材自身。因此,下一步应重点关注焊缝腐蚀和焊缝疲劳交叉学科研究,这不仅是研究难点,也是工程急需。
(3)对于构件层面,使用“名义力学性能法”将腐蚀造成的几何损失等效为材性损失仍是当前的主流建模方法。然而,由于该方法不能考虑局部蚀坑的影响,所以不具有普适性。下一步应重点关注考虑蚀坑分布的建模方法开发。事实上,蚀坑分布规律在材料层次已有不少研究,今后需将已有蚀坑分布特点应用在构件的几何建模上,这不仅能提高建模精度,也能提高蚀坑分布数据利用率。
(4)对于结构体系层面,由于需要巨大的时间和经济成本,因此不建议进行过多的加速腐蚀和振动台试验,而可以重点关注仿真方法的开发,在仿真中需注意对模型进行合理的简化,尤其是在腐蚀结构地震易损性分析中,由于需要较大的工作量,所以建模和计算效率至关重要。同时,在建模中也要考虑蚀坑分布的影响。
作者贡献声明
张岳林:文献收集,初稿撰写,总结归纳,分析。
冉翠玲:文献收集,初稿撰写,总结归纳,分析。
王 伟:指导,润色,资助。
顾跃跃:文献收集,初稿撰写,总结归纳,分析。
方 成:指导,润色,资助。
参考文献
蔡长赓. 建设部印发《钢结构住宅建筑产业化技术导则》[J]. 工程建设与设计, 2002(4):13. [百度学术]
CAI Changgeng The Ministry of Construction has issued the "Technical Guidelines for the Industrialization of Steel Structure Residential Buildings" [J]. Engineering Construction and Design, 2002 (4): 13 [百度学术]
KOCH G. Trends in oil and gas corrosion research and technologies [M]. Dublin: Woodhead Publishing, 2017. [百度学术]
HOU B, LI X, MA X, et al. The cost of corrosion in China[J]. npj Materials Degradation, 2017, 1(1): 4. [百度学术]
KOCH G, VARNEY J, THOMPSON N, et al. International measures of prevention, application, and economics of corrosion technologies study [R]. Huston: NACE International, 2016. [百度学术]
沈慧. 手表上的秒针每转过一圈,就有1吨钢腐蚀成铁锈——腐蚀,身边的破坏者 [J]. 表面工程与再制造, 2019, 19 (108): 24. [百度学术]
SHEN Hui. Every second hand on a watch rotates, 1 ton of steel corrodes into rust - corrosion, the vandals around us [J]. Surface Engineering and Remanufacturing, 2019, 19 (108): 24. [百度学术]
曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005. [百度学术]
CAO Chunan. Natural environmental corrosion of materials in China [M]. Beijing: Chemical Industry Press, 2005. [百度学术]
柯伟, 杨武. 腐蚀科学技术的应用和失效案例[M]. 北京: 化学工业出版社, 2006. [百度学术]
KE Wei, YANG Wu. Application and failure cases of corrosion science and technology [M]. Beijing: Chemical Industry Press, 2006. [百度学术]
WITCHER T R. From disaster to prevention: The Silver Bridge[J]. Civil Engineering, 2017, 87(11): 44. [百度学术]
王力力, 易伟建. 斜拉索的腐蚀案例与分析[J]. 中南公路工程, 2007, 32(1): 93. [百度学术]
WANG Lili, YI Weijian. Corrosion cases and analysis of stay cables [J]. Zhongnan Highway Engineering, 2007, 32 (1): 93. [百度学术]
魏建东.宜宾小南门大桥的抢修加固与恢复工程[J]. 公路 ,2003(4): 34. [百度学术]
WEI Jiandong. Emergency repair, reinforcement, and restoration of the Xiaonanmen Bridge in Yibin [J]. Highway, 2003 (4): 34. [百度学术]
杨旭, 雷宏刚, 葛娈, 等.腐蚀引起的某钢结构网架坍塌事故分析[C]//全国建筑物鉴定与加固技术委员会, 2016: 614-620. [百度学术]
YANG Xu, LEI Honggang, GE Tan, et al. Analysis of a steel structure grid collapse accident caused by corrosion [C]//National Technical Committee for Building Appraisal and Reinforcement, 2016: 614-620. [百度学术]
APOSTOLOPOULOS C A, Papadopoulos M P. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400[J]. Construction and Building Materials, 2007 (21): 855. [百度学术]
WANG H, WANG Y, ZHANG Z, et al. Cyclic behavior and hysteresis model of beam-column joint under salt spray corrosion environment[J]. Journal of Constructional Steel Research, 2021 (183): 106737. [百度学术]
ZHANG X, ZHENG S, ZHAO X. Experimental and numerical investigations into seismic behavior of corroded steel frame beams and columns in offshore atmospheric environment[J]. Journal of Constructional Steel Research, 2023 (201): 107757. [百度学术]
BOHNENKAMP K, BURGMANN G, SCHWENK W, Corrosion atmospherique de l’acier doux, Exposition de l’acier aux intemperies[J]. Galvano-Organo, 1974 (445): 587. [百度学术]
李牧铮, 张军. 耐候钢与碳钢大气腐蚀规律的分析研究[J]. 腐蚀科学与防护技术, 1992, 4(3): 174. [百度学术]
LI Muzheng, ZHANG Jun. Analysis and research on atmospheric corrosion law of weathering steel and carbon steel[J]. Corrosion Science and Protection Technology, 1992,4 (3): 174. [百度学术]
梁彩凤,侯文泰. 碳钢及低合金钢8年大气暴露腐蚀研究[J]. 腐蚀科学与防护技术, 1995, 7(3): 183. [百度学术]
LIANG Caifeng, HOU Wentai. A study on atmospheric exposure corrosion of carbon steel and low alloy steel for 8 years[J]. Corrosion Science and Protection Technology, 1995, 7 (3): 183. [百度学术]
张全成,吴建生,陈家光,等. 近海大气中耐侯钢和碳钢抗腐蚀性能的研究[J]. 材料科学与工程, 2001, 19(2): 12. [百度学术]
ZHANG Quancheng, WU Jiansheng, CHEN Jiaguang, et al. A study on the corrosion resistance of weathering resistant steel and carbon steel in the offshore atmosphere[J]. Materials Science and Engineering, 2001, 19 (2): 12. [百度学术]
萧以德, 张三平, 曹献龙, 等. 我国大气腐蚀研究进展[J]. 装备环境工程, 2005, 2(5): 3. [百度学术]
XIAO Yide, ZHANG Sanping, CAO Xianlong, et al. Research progress on atmospheric corrosion in China[J]. Equipment Environmental Engineering, 2005, 2 (5): 3. [百度学术]
王成章,汪学华,秦晓洲. 碳钢及低合金钢在重庆和万宁地区大气腐蚀规律研究[J]. 装备环境工程, 2006, 3(2): 23. [百度学术]
WANG Chengzhang, WANG Xuehua, QIN Xiaozhou. Research on atmospheric corrosion laws of carbon steel and low alloy steel in Chongqing and Wanning regions [J] Equipment Environmental Engineering, 2006, 3 (2): 23. [百度学术]
PANCHENKO Y M, MARSHAKOV A I. Long-term prediction of metal corrosion losses in atmosphere using a power-linear function[J]. Corrosion Science, 2016 (109): 217. [百度学术]
FELIU S, MORCILLO M. The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts [J]. Corrosion Science, 1993(3):415. [百度学术]
李牡铮, 张军, 祁凤玉. 环境因子与大气腐蚀关系的数学模型和大气腐蚀预测[J]. 中国腐蚀与防护学报, 1993, 13(1): 10. [百度学术]
LI Muzheng, ZHANG Jun, QI Fengyu. Mathematical model and atmospheric corrosion prediction of the relationship between environmental factors and atmospheric corrosion [J] Chinese Journal of Corrosion and Protection, 1993, 13 (1): 10. [百度学术]
汪轩义, 王光雍, 屈祖玉, 等. 环境因素对碳钢和低合金钢大气腐蚀的影响[J]. 中国腐蚀与防护学报, 1995, 15(2): 124. [百度学术]
WANG Xuanyi, WANG Guangyong, QU Zuyu, et al. The influence of environmental factors on atmospheric corrosion of carbon steel and low alloy steel [J]. Chinese Journal of Corrosion and Protection, 1995, 15 (2): 124. [百度学术]
萧以德, 张三平, 曹献龙, 等. 我国大气腐蚀研究进展(续2) [J]. 装备环境工程, 2006, 3(1): 16. [百度学术]
XIAO Yide, ZHANG Sanping, CAO Xianlong, et al. Research progress on atmospheric corrosion in China (continued 2) [J]. Equipment Environmental Engineering, 2006, 3 (1): 16. [百度学术]
DONG J, KE W. Fitting and evolution of atmospheric corrosion of low alloy steels under wet/dry cyclic corrosion test[M]// Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. [s.l.]: John Wiley & Sons, Ltd, 2013. [百度学术]
WANG J H, WEI F I, CHANG Y S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. Materials Chemistry and Physics, 1997 (47): 1. [百度学术]
MORCILLO M, FELIU S, SIMANCAS J. Deviation from bilogarithmic law for atmospheric corrosion of steel[J]. British Corrosion Journal, 1993 (28): 50. [百度学术]
McCUEN R H, ALBRECHT P, CHENG J G. A new approach to power-model regression of corrosion penetration data[C]//Corrosion Forms and Control for Infrastructure. Philadelphia: American Society for Testing and Materials, 1992: 46–76. [百度学术]
Morcillo M, Chico B, Díaz I, et al. Atmospheric corrosion data of weathering steels. A review[J]. Corrosion Science, 2013 (77): 6. [百度学术]
International Standards Organization. Corrosion of Metals and Alloys–Corrosivity of Atmospheres–Guiding Values for the Corrosivity Categories: ISO 9224 [S]. Geneve: International Organization for Standardization, 1992. [百度学术]
International Standard Organization. Corrosion of Metals and Alloys. Classification of Corrosivity of Atmospheres: ISO 9223 [S]. Geneve: International Organization for Standardization, 1991. [百度学术]
ALBRECHT P, HALL T T. Atmospheric corrosion resistance of structural steels[J]. Journal of Materials in Civil Engineering, 2003 (15): 2. [百度学术]
孙乐彬. 近海大气环境下在役钢框架结构地震损伤性能及易损性研究[D]. 西安: 西安建筑科技大学, 2015. [百度学术]
SUN Lebin. Research on seismic damage performance and vulnerability of in-service steel frame structures in offshore atmospheric environment [D]. Xi'an: Xi'an University of Architecture and Technology, 2015 [百度学术]
程洋. 酸性大气环境下锈蚀钢框架结构抗震性能及地震易损性研究[D]. 西安: 西安建筑科技大学, 2015. [百度学术]
CHENG Yang. Research on seismic performance and seismic vulnerability of corroded steel frame structures in acidic atmospheric environments [D]. Xi'an: Xi'an University of Architecture and Technology, 2015 [百度学术]
左英. 抗震性能研究及地震易损性分析[D]. 西安: 西安建筑科技大学, 2017. [百度学术]
ZUO Ying. Research on seismic performance and seismic vulnerability analysis [D]. Xi'an: Xi'an University of Architecture and Technology, 2017 [百度学术]
MATSUMOTO M, SHIRAI Y, NAKAMURA I, et al. A proposal of effective thickness estimation method of corroded steel member[J]. Bridge Foundation Engineering, 1989, 23(12):19. [百度学术]
NAKAI T, MATSUSHITA H, YAMAMOTO N, et al. Effect of pitting corrosion on local strength of hold frames of bulk carriers 1st report[J]. Marine Structures, 2004 (17): 403. [百度学术]
陈露. 锈蚀后钢材材料性能退化研究[D]. 西安: 西安建筑科技大学, 2010. [百度学术]
CHEN Lu. Research on the degradation of steel material properties after corrosion [D]. Xi'an: Xi'an University of Architecture and Technology, 2010. [百度学术]
史炜洲,童乐为,陈以一,等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53. [百度学术]
SHI Weizhou, TONG Lewei, CHEN Yiyi, et al. Experimental study on the effect of corrosion on the mechanical properties of steel and steel beams [J]. Journal of Building Structures, 2012, 33 (7): 53. [百度学术]
GARBATOV Y, GUEDES SOARES C, PARUNOV J, et al. Tensile strength assessment of corroded small scale specimens[J]. Corrosion Science, 2014 (85): 296. [百度学术]
郑山锁, 王晓飞, 孙龙飞, 等. 酸性大气环境下多龄期钢框架节点抗震性能试验研究[J]. 建筑结构学报, 2015, 36(10): 20. [百度学术]
ZHENG Shansuo, WANG Xiaofei, SUN Longfei, et al. Experimental study on seismic performance of multi age steel frame joints in acidic atmospheric environments[J]. Journal of Building Structures, 2015, 36 (10): 20. [百度学术]
徐善华, 王皓, 苏磊. 中性盐雾腐蚀环境中Q235钢板力学性能的退化规律[J]. 机械工程材料, 2016, 40(5): 86. [百度学术]
XU Shanhua, WANG Hao, SU Lei. The degradation law of mechanical properties of Q235 steel plate in neutral salt spray corrosion environment [J]. Mechanical Engineering Materials, 2016, 40 (5): 86. [百度学术]
JIA C, SHAO Y, GUO L, LIU Y. Mechanical properties of corroded high strength low alloy steel plate[J]. Journal of Constructional Steel Research, 2020 (172): 106160. [百度学术]
WOLOSZYK K, GARBATOV Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens[J]. Engineering Structures, 2020 (212): 110544. [百度学术]
KAITA T, APPUHAMY J M R S, ITOGAWA K, et al. Experimental study on remaining strength estimation of corroded wide steel plates under tensile force[J]. Procedia Engineering, 2011(14): 2707. [百度学术]
QIN G C, XU S H, YAO D Q, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016 (125): 205. [百度学术]
XU S, WANG H, LI A, et al. Effects of corrosion on surface characterization and mechanical properties of butt-welded joints[J]. Journal of Constructional Steel Research, 2016(126): 50. [百度学术]
WANG H, XU S, WANG Y, et al. Effect of pitting degradation on ductile fracture initiation of steel butt-welded joints[J]. Journal of Constructional Steel Research, 2018(148): 436. [百度学术]
SHENG J, XIA J. Effect of simulated pitting corrosion on the tensile properties of steel[J]. Construction and Building Materials, 2017 (131): 90. [百度学术]
ZHAO Z, ZHANG H, XIAN L, et al. Tensile strength of Q345 steel with random pitting corrosion based on numerical analysis[J]. Thin–Walled Structures, 2020 (148): 106579. [百度学术]
WANG Y, XU S, WANG H, et al. Predicting the residual strength and deformability of corroded steel plate[J]. Construction and Building Materials, 2017(152): 777. [百度学术]
REN S, GU Y, KONG C, et al. Effects of the corrosion pitting parameters on the mechanical properties of corroded steel[J]. Construction and Building Materials, 2021(272): 121941. [百度学术]
APPUHAMY J M R S, OHGA M, CHUN P, et al. Numerical Investigation of Residual Strength and Energy Dissipation Capacities of Corroded Bridge Members Under Earthquake Loading[J]. Journal of Earthquake Engineering, 2013, 17(2):171. [百度学术]
JIA Z, YANG Y, HE Z, et al. Mechanical test study on corroded marine high performance steel under cyclic loading[J]. Applied Ocean Research, 2019 (93): 101942. [百度学术]
CHABOCHE J L, ROUSSELIER G. On the plastic and viscoplastic constitutive equations—part I: rules developed with internal variable concept [J]. Journal of Pressure Vessel Technology, 1983, 105(2): 153. [百度学术]
CHABOCHE J L. Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2(2):149. [百度学术]
CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989(5):247. [百度学术]
CHABOCHE J L. Unified Constitutive Laws of Plastic Deformation[M]. Chatillon: Academic Press, Inc, 1996. [百度学术]
WANG Y, SHI T, ZHANG H, et al. Hysteretic behavior and cyclic constitutive model of corroded structural steel under general atmospheric environment[J]. Construction and Building Materials, 2021 (270): 121474. [百度学术]
ZHANG Y, FANG C, WANG W. Experimental and numerical study on cyclic behavior of corroded Q345 steel[J]. Journal of Constructional Steel Research, 2022 (196): 107369. [百度学术]
GOOCH T G and HART P H M. Review of Welding Practices for Carbon Steel Deaerator Vessels[J]. Materials performance, 1986, 12(25): 30. [百度学术]
JIANG C, XIONG W, CAI C S, et al. Fatigue assessment of fillet weld in steel bridge towers considering corrosion effects[J]. Engineering Failure Analysis, 2023 (143): 106901. [百度学术]
ZHANG Y, WANG W, HUO H, et al. Influence of corrosion on ultra-low cycle fatigue performance of steel butt-welded joints with various welding methods[J]. Journal of Constructional Steel Research, 2024(215): 108561. [百度学术]
MA H C, LIU Z Y, DU C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corrosion Science,2015(100): 62. [百度学术]
SONG J, LI Z, XIAO K, et al. Study on the local corrosion behaviour and mechanism of bogie steel welded joints[J]. Corrosion Science,2022(208): 110709. [百度学术]
LI Q, YAO Q, SUN L, et al. Effect of micro-galvanic corrosion on corrosion fatigue cracking of the weld joint of high strength bridge steel[J]. International Journal of Fatigue, 2023(170): 107568. [百度学术]
GU Y, LU N, XU Y, et al. Microstructure characteristics of Q345R-steel welded joints and their corrosion behavior in a hydrofluoric acid environment[J]. Journal of Nuclear Materials, 2023(574): 154214. [百度学术]
SHI G, WANG M, WANG Y, et al. Cyclic behavior of 460 MPa high strength structural steel and welded connection under earthquake loading [J]. Advances in Structural Engineering,2013,16(3): 451. [百度学术]
VEERABABU J, GOYAL S, SANDHYA R, et al. Low cycle fatigue behaviour of Grade 92 steel weld joints[J]. International Journal of Fatigue, 2017 (105): 60. [百度学术]
GUO S J, WANG R Z, CHEN H, et al. A comparative study on the cyclic plasticity and fatigue failure behavior of different subzones in CrNiMoV steel welded joint[J]. International Journal of Mechanical Sciences, 2019(150): 66. [百度学术]
BAN H, ZHU J, SHI G. Cyclic loading tests on welded connections of stainless-clad bimetallic steel and modelling[J]. Journal of Constructional Steel Research, 2020(171): 106140. [百度学术]
ZHANG W, ZENG L. Experimental investigation and low-cycle fatigue life prediction of welded Q355B steel[J]. Journal of Constructional Steel Research, 2021 (178): 106497. [百度学术]
郑山锁,王晓飞,韩言召,等.酸性大气环境下多龄期钢框架柱抗震性能试验研究[J].土木工程学报,2015,48(8):47. [百度学术]
ZHENG Shansuo, WANG Xiaofei, HAN Yanzhao, et al. Experimental study on seismic performance of multi age steel frame columns in acidic atmospheric environments[J]. Journal of Civil Engineering, 2015,48 (8): 47. [百度学术]
郑山锁,张晓辉,王晓飞,等.近海大气环境下多龄期钢框架柱抗震性能的试验研究[J].土木工程学报,2016,49(4):69. [百度学术]
ZHENG Shansuo, ZHANG Xiaohui, WANG Xiaofei, et al. Experimental study on seismic performance of multi age steel frame columns in offshore atmospheric environments [J]. Journal of Civil Engineering, 2016,49 (4): 69. [百度学术]
WANG H, XU S, LI A, et al. Experimental and numerical investigation on seismic performance of corroded welded steel connections[J]. Engineering Structures,2018 (174):10. [百度学术]
王友德,史涛,徐善华,等. 一般大气环境锈蚀钢柱抗震性能试验与数值分析[J].土木工程学报,2021,54(6):62. [百度学术]
WANG Youde, SHI Tao, XU Shanhua, et al. Experimental and numerical analysis of seismic performance of corroded steel columns in general atmospheric environments [J]. Journal of Civil Engineering, 2021,54 (6): 62. [百度学术]
ZHANG X, LI B. Damage characteristics and assessment of corroded RC beam-column joint under cyclic loading based on acoustic emission monitoring[J]. Engineering Structures, 2020 (205): 110090. [百度学术]
ZHANG X, LI B. Seismic performance of exterior reinforced concrete beam-column joint with corroded reinforcement[J]. Engineering Structures, 2021 (228): 111556. [百度学术]
SHANG Z, ZHENG S, ZHENG H, et al. Seismic behavior and damage evolution of corroded RC columns designed for bending failure in an artificial climate[J]. Structures, 2022 (38): 184. [百度学术]
DANGWAL S, SINGH H. Behavior of corrosion damaged non-seismically and seismically detailed reinforced concrete beam-column sub-assemblages under cyclic loading[J]. Engineering Failure Analysis, 2023 (146): 107135. [百度学术]
郑山锁,田进,韩言召,等.考虑锈蚀的钢结构地震易损性分析[J].地震工程学报,2014,36(1):1. [百度学术]
ZHENG Shansuo, TIAN Jin, HAN Yanzhao, et al. Seismic vulnerability analysis of steel structures considering corrosion [J]. Journal of Earthquake Engineering, 2014,36 (1): 1. [百度学术]
王晓飞. 酸性大气环境下多龄期钢框架结构抗震性能及优化设计方法研究[D].西安:西安建筑科技大学,2015. [百度学术]
WANG Xiaofei Research on seismic performance and optimization design methods of multi age steel frame structures in acidic atmospheric environments [D]. Xi'an: Xi'an University of Architecture and Technology, 2015. [百度学术]
郑山锁,左英,张晓辉,等.酸性大气环境下多龄期平面钢框架结构抗震性能试验研究[J].工程力学,2017,34(9): 73. [百度学术]
ZHENG Shansuo, ZUO Ying, ZHANG Xiaohui, et al. Experimental study on seismic performance of multi age planar steel frame structures in acidic atmospheric environments [J]. Engineering Mechanics, 2017,34 (9): 73. [百度学术]
ZHANG X, ZHENG S, ZHAO X. Experimental and numerical study on seismic performance of corroded steel frames in chloride environment[J]. Journal of Constructional Steel Research, 2020 (171): 106164. [百度学术]