摘要
页岩油和页岩气开采过程产生的大量废料,如果不经过处理,将对地下水造成污染。首先,介绍了页岩油气的分布和赋存机理,以及地面干馏、水平钻井和水力压裂等开采技术;然后,阐述了页岩油气在现场准备、钻井压裂、采油采气等不同开采环节中的主要污染源;进而讨论了页岩油气开采中主要的地下水污染物,分别是有机污染物、重金属和放射性物质,同时阐述了其带来的地下水污染长期性、隐蔽性和差异性的特点;最后,从技术改进和废料处理等方面对页岩油气开采对地下水污染的防治手段进行了展望。
能源一直是人类经济社会发展的共同问题,石油、煤炭和天然气等传统能源储量日益减少,寻找新型能源的问题越来越受到人们的关注。页岩油和页岩气是在页岩中形成和赋存的油气资源,是目前极具潜力、储量丰富的非常规能源。世界油页岩矿床储量转化为可开发页岩油量,可达4 000亿t,相当于世界已探明原油的5.4
可以产生页岩油和页岩气的岩石统称为页岩,是一种灰分、有机质含量高的固体可燃有机矿产。与传统的油气岩层相比,油气在页岩岩层中的流动性更差、渗透率更
本文针对页岩油和页岩气开采对地下水造成的污染进行介绍。首先介绍了页岩油气的成藏机理和分布,其次介绍了开采手段以及开采周期中可能造成地下水污染的环节,进而阐述了页岩油气开采造成的地下水污染的污染特征,包括污染物种类和污染特点,进而对污染防治方法进行了论述,最后对该研究方向提出了新展望。
能产生和储存非常规油气的是富含细颗粒的岩石,根据其产油气的性质,又分为油页岩和气页岩,主要由矿物、干酪根和少量的沥
页岩油是成熟有机质页岩石油的总称,一般会在页岩孔隙和缝隙中,以吸附态或游离态形式存在。页岩气是从页岩中开采的非常规天然气,来自生物作用、热解作用和热裂解作用,其存在形式多样,既可以在天然裂缝和晶体孔隙中以游离态存在,也可以吸附在岩石和黏土颗粒表层,或者溶解在页岩层产生的碳氢化合物
我国页岩资源储量大,分布广泛,目前处于世界第二位。我国页岩大多为陆相成因,其脂质含量较
页岩油气是较早开发和利用的非常规油气,已经发展出了不同实际情况下的开发技术。
根据页岩的埋深不同,页岩油可以采取地面干馏、原位开采2种方
页岩气存在于致密的、渗透性极低的页岩层中,几乎无法自然溢出,因此页岩气开采必须采取人工手段来提高其利用效率。页岩气的开采周期包括现场准备、水平钻井、水力压裂、回流和生产等活动,其中水平钻井和水力压裂是最为关键的技术。
水平井是最大斜角保持与垂直方向呈85°~95
如

图1 页岩油气开采造成的地下水污染示意
Fig.1 Groundwater contamination cause by extraction of shale oil and gas
页岩油气的开采是一个涉及到复杂开采技术的工程,需要进行必要的现场准备工作,包括环境勘探、场地平整、道路修建、设备安装和原材料运输等工作。地面干馏开采页岩油时的岩层开挖,导致了油页岩层和含水层的接触,造成了地下水的污染。道路是环境污染的持续来源之一,从建设活动到运输活动,都可能带来不同程度的地下水污染。Ličbinský
钻井和压裂是页岩油气开采的核心环节,其工作过程中涉及到多种污染源,是产生大量废料的主要环节,对地下水环境有巨大威胁。
在钻井工作中,向井内注入钻井液并将岩层碎屑带出,产生的包括钻屑和钻井废水在内钻井废料,是页岩油气开采的重要污染源之一。钻井废料是由机械污水、钻井液废液以及钻井岩屑组成的。钻井时使用的设备有钻井泵、柴油机、水刹车等,在设备工作期间会排放各类污水。钻井液是在钻井时起到冲洗、冷却、润滑等作用的液体。钻井岩屑是钻井过程中钻头冲破岩层而产生的碎屑,会随着钻井废液被一同带出至地面。因此,成分来源的多样性使得钻井废料的污染物组成非常复杂。苯、乙苯和二甲苯天然存在于许多碳氢化合物矿床中,会随钻井过程带出并可能进入到地下水中。除此之外,页岩和残余页岩渣都会向水中释放有机污染物,除了页岩油开采过程外,开采后的残余页岩渣也会对地下水造成持续的污染。
页岩油的原位干馏以及页岩气的开采中最常使用的压裂方式是水力压裂法。该方法需要大量的水,通常是钻井过程所需水量的3倍以上,同时产生大量液体流出物,造成地下水污染。一个页岩气井需要消耗约20 000
页岩油气开采中的水循环如

图2 页岩油气开采水循环示意
Fig. 2 Water cycle in extraction of shale oil and gas
除了以上所述的必然污染事件外,还有存在压裂液和废液存储和运输中的泄露溢出,亦或是水力压裂越流迁移等可能造成地下水污染的随机性事件。首先,水力压裂的巨大的需水量使稳定的水源成为开采的必要条件之一,地下水是最常使用的水源,地下水在页岩油气开采地区的大量开采,可能造成地下水系水量减小,增加受污染的风险。水力压裂的井筒可能由于各种人为或不可控因素遭到破坏,形成孔隙、裂缝等。Mullen
页岩油和页岩气的采集和处理过程也可能造成地下水污染,主要涉及到以下几个方面。首先是页岩气在采集过程中的泄露。在调查中发现,页岩气井附近居民的饮用水井中,甲烷浓度随着与页岩气井距离的减小而升高,最高达64 mg·
页岩油的地面干馏也带来了地下水污染的风险。页岩经过开采剥离后,被投入干馏炉热解生成页岩油,过程中产生从炉顶逸出并冷却的伴生水以及页岩的废渣。干馏废水中有机化合物含量很高,除了石油烃类外,还有大量有机氮、有机硫等。由于开采过程产生的废水会产生泄露和下渗,在油页岩采矿区的地下水中,苯系物普遍超
除此之外,页岩油的原位开采虽然具有一定环保的优势,但仍会给地下水环境造成影响。原位开采中页岩油气释出的同时,油页岩以及油页岩灰都会释放有机污染物,并在岩层中长期吸附和积累,并缓慢释放到地下水环境中,造成对地下水的持续污染。Wang
有机污染物是页岩油气开采导致的地下水污染中的重点,一方面是参与开采的有机污染物组分多,其生物毒性强,通常具有积累性和持续性;另一方面是有机污染物的分子结构复杂,从地下水中去除相对较难。有机化合物污染几乎存在于整个页岩油气开采周期。Hu
在页岩油气产生的废液中,石油烃的含量很高,其中占比最高的是烷烃类。页岩气主要由气态烷烃组成,在开采过程中会不可避免地产生气体逸出。在Marcellus页岩气地区的含水层调查中发
压裂液中使用的化学添加剂种类很多,其中所含有的有机化学品有甲醇、乙二醇、乙二醇单丁醚、萘等,用作杀菌、防冻、表面活性剂等。这些化学添加剂会在返排水和采出水中被检测出来。He
钻井产生的油机钻屑中含有多种重金属,除了钻井液的添加剂外,还有来自岩层碎屑的重金属,主要有Ba、Cr、Cu、Ni、Pb、Zn
在页岩油气生产过程中,可能将天然存在的放射性物质带到地表,包括镭、铀和钍以及它们的一些衰变元
页岩油气的开采是一个稳定的长期过程,页岩油气井通常可以维持几十年的开采。而水力压裂并非一个连续过程,通常需要定期对其进行再压裂,以保证页岩油气的正常采集。这样的长期非连续的采集过程,事实上为页岩油气向地下水层的泄露提供了更多可趁之机。随着时间推移,页岩油气开采释放的污染物增
页岩通常埋藏较深,其埋深甚至达到几千米。而页岩油气的开采本质是对地下岩层的改造,这种改造是在地下进行的,难以被观察到。加之页岩油气的生产周期较长,对开采区域的地下水进行实时监测也具有一定的难度。除此之外,如碳氢化合物等污染的标准浓度较低,在Qiao
页岩油气污染的防治措施,一方面是改良开采技术,如提高开采效率、改良钻井液或压裂液成分以及减少意外事故发生等,另一方面是对废料进行无毒化和资源化处理。
原位转化技术是一种改变热解方式的新型原位开采技术,目前已经开发出多种技术方案,包括壳牌提出的原位转化技术(Shell’s in-Situ conversion process, ICP)、埃克森美孚提出的电压裂技术(electrofracTM process)、地热燃料电池(geothermic fuel cell, GFC)等多种技术方
页岩油气废料无毒化通常有物理、化学、生物和以上三者组合的方
地下水是重要的饮用水源,页岩油气开发带来的污染对人体健康有极大威胁。若不及时规范页岩油气开发和控制污染源,将埋下巨大的污染隐患。页岩油气的开发仍然在发展阶段,对开采技术的改良、污染的整治等问题,都需要进一步研究。因此,根据目前页岩油气开采造成的地下水污染现状,综合上述文献内容,提出以下后续建议:
(1)页岩油气开采亟需更加温和、高效的页岩油气开采手段,以减少对地下整体环境的影响。
(2)对页岩油气开发中的多种类污染源的识别和量化有助于控制和治理开采对地下水造成的污染。
(3)页岩油气开发相关的标准和法规仍需要进一步规范和完善。
作者贡献声明
邹佳婕:完成论文主体逻辑框架,查找和筛选文献,整理内容点和创新点,撰写初稿,完成后续修改。
代朝猛:提出论文总体思路,对论文总体架构指导撰写,全文审阅。
韩跃鸣:对论文内容以及结构进行修改完善和优化。
胡佳俊:针对论文结构优化提出指导性建议。
张亚雷:对论文提出指导性建议。
刘曙光:对论文提出指导性建议。
周 烺:对论文提出指导性建议。
参考文献
DYNI J R. Geology and resources of some world oil-shale deposits [J]. Oil Shale, 2003, 20 (3) :193 [百度学术]
中华人民共和国国土资源部.中国矿产资源报告 [M]. 北京: 地质出版社 , 2021. [百度学术]
Ministry of Land and Resources of the People ' s Republic of China. China mineral resources report[M]. Beijing: Geology Press, 2021. [百度学术]
VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009. [百度学术]
FONTENOT B E, HUNT L R, HILDENBRAND Z L, et al. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation[J]. Environmental Science & Technology, 2013, 47(17): 10032. [百度学术]
SUN Y, LIU Z, LI Q, et al. Controlling groundwater infiltration by gas flooding for oil shale in-situ pyrolysis exploitation[J]. Journal of Petroleum Science and Engineering, 2019, 179: 444. [百度学术]
MA Y, LI S. The mechanism and kinetics of oil shale pyrolysis in the presence of water[J]. Carbon Resources Conversion, 2018, 1(2): 160. [百度学术]
CURTIS J B. Fractured shale-gas systems[J]. Aapg Bulletin, 2002, 86(11): 1921. [百度学术]
XU Y, SUN P, YAO S, et al. Progress in exploration, development and utilization of oil shale in China[J]. Oil Shale, 2019, 36(2): 285. [百度学术]
柳蓉, 张坤, 刘招君, 等. 中国油页岩富集与地质事件研究[J]. 沉积学报, 2021, 39(1): 10. [百度学术]
LIU Rong, ZHANG Kun, LIU Zhaojun, et al. Study on oil shale enrichment and geological events in China [J]. Acta Sedimentologica Sinica, 2021, 39(1): 10. [百度学术]
张传文, 孟庆强, 唐玄. 油页岩开采技术现状与展望[J]. 矿产勘查, 2021, 12(8): 1798. [百度学术]
ZHANG Chuanwen, MENG Qingqiang, TANG Xuan. Present situation and prospect of oil shale mining technology [J]. Mineral Exploration, 2021, 12(8): 1798. [百度学术]
AZAR J J. Oil and natural gas drilling[M]. Encyclopedia of Energy. Elsevier, 2004. [百度学术]
ISLAM M R, HOSSAIN M E. Advances in horizontal well drilling[M]. Drilling Engineering Houston: Elsevier, 2021. [百度学术]
GUO B, LYONS W C, GHALAMBOR A. 17 - Hydraulic fracturing[M]//Petroleum Production Engineering. Burlington: Gulf Professional Publishing, 2007. [百度学术]
LIČBINSKÝ R, HUZLÍK J, PROVALILOVÁ I, et al. Groundwater contamination caused by road construction materials[J]. Transactions on Transport Sciences, 2012, 5(4): 205. [百度学术]
ULIASZ-MISIAK B, WINID B, LEWANDOWSKA-ŚMIERZCHALSKA J, et al.. Impact of road transport on groundwater quality[J]. Science of The Total Environment, 2022, 824: 153804. [百度学术]
EARON R, OLOFSSON B, RENMAN G. Initial effects of a new highway section on soil and groundwater[J]. Water, Air & Soil Pollution, 2012, 223(8): 5413. [百度学术]
MICHALSKI R, FICEK A. Environmental pollution by chemical substances used in the shale gas extraction—a review[J]. Desalination and Water Treatment, 2016, 57(3): 1336. [百度学术]
KONDASH A J, LAUER N E, VENGOSH A. Erratum: The intensification of the water footprint of hydraulic fracturing[J]. Science advances, 2018, 4(8): eaar5982. [百度学术]
埃哲森. 水资源和页岩气开发[R]. 上海: 埃森哲中国, 2013. [百度学术]
ACCENTURE. Water resources and shale gas development[R]. Shanghai: Accenture China, 2013. [百度学术]
MULLEN F, BOOGAERDT H, ARCHER R. Relation between fracture stability and gas leakage into deep aquifers in the north Perth basin in western Australia[J]. Groundwater, 2019, 57(5): 678. [百度学术]
RAHM D. Regulating hydraulic fracturing in shale gas plays: The case of Texas[J]. Energy Policy, 2011, 39(5): 2974. [百度学术]
ZOBACK M, KITASEI S, COPITHORNE B. Addressing the environmental risks from shale gas development[M]. Washington D C: Worldwatch Institute; 2010. [百度学术]
HOLZMAN D C. Methane found in well water near fracking sites[J]. Environmental Health Perspectives, 2011, 119(7): a289. [百度学术]
JACKSON R B, VENGOSH A, DARRAH T H, et al. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction[J]. Proceedings of the National Academy of Sciences, 2013, 110(28): 11250. [百度学术]
WODA J, WEN T, OAKLEY D, et al. Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells[J]. Proceedings of the National Academy of Sciences, 2018, 115(49): 12349. [百度学术]
GROSS S A, AVENS H J, BANDUCCI A M, et al. Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations[J]. Journal of the Air & Waste Management Association, 2013, 63(4): 424. [百度学术]
KAHRU A, MALOVERJAN A, SILLAK H, et al. The toxicity and fate of phenolic pollutants in the contaminated soils associated with the oil-shale industry[J]. Environmental Science and Pollution Research, 2002, 9(1): 27. [百度学术]
WANG H, ZHANG W, QIU S, et al. Release characteristics of Pb and BETX from in situ oil shale transformation on groundwater environment[J]. Scientific Reports, 2021, 11(1): 16166. [百度学术]
HU S, XIAO C, JIANG X, et al. Potential impact of in-situ oil shale exploitation on aquifer system[J]. Water, 2018, 10(5): 649. [百度学术]
HU S, XIAO C, LIANG X, et al. The influence of oil shale in-situ mining on groundwater environment: A water-rock interaction study[J]. Chemosphere, 2019, 228: 384. [百度学术]
OSBORN S G, VENGOSH A, WARNER N R, et al. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8172. [百度学术]
JEFIMOVA J, IRHA N, REINIK J, et al. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: A long-term field study[J]. Science of The Total Environment, 2014, 481: 605. [百度学术]
STRONG L C, GOULD T, KASINKAS L, et al. Biodegradation in waters from hydraulic fracturing: chemistry, microbiology, and engineering[J]. Journal of Environmental Engineering, 2014, 140(5): B4013001. [百度学术]
HILDENBRAND Z L, CARLTON D D, FONTENOT B E, et al. A comprehensive analysis of groundwater quality in the Barnett shale region[J]. Environmental Science & Technology, 2015, 49(13): 8254. [百度学术]
姜林, 钟茂生, 贾晓洋, 等. 基于地下水暴露途径的健康风险评价及修复案例研究[J]. 环境科学, 2012, 33(10): 3329. [百度学术]
JIANG Lin, ZHONG Maosheng, JIA Xiaoyang, et al. Health risk assessment and remediation case study based on groundwater exposure pathway [J]. Environmental Science, 2012, 33(10): 3329. [百度学术]
JACKSON R B, VENGOSH A, CAREY J W, et al. The environmental costs and benefits of fracking[J]. Annual Review of Environment and Resources, 2014, 39(1): 327. [百度学术]
ZIEMKIEWICZ P F, QUARANTA J D, DARNELL A, et al. Exposure pathways related to shale gas development and procedures for reducing environmental and public risk[J]. Journal of Natural Gas Science and Engineering, 2014, 16: 77. [百度学术]
HE Y, SUN C, ZHANG Y, et al. Developmental toxicity of the organic fraction from hydraulic fracturing flowback and produced waters to early life stages of zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2018, 52(6): 3820. [百度学术]
KUJAWSKA J, CEL W, WASAG H. Leachability of heavy metals from shale gas drilling waste[J]. Rocznik Ochrona Srodowiska, 2016, 18: 909. [百度学术]
XU T, WANG L, WANG X, et al. Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: A human health risk assessment for the workers[J]. Ecotoxicology and Environmental Safety, 2018, 165: 160. [百度学术]
WOO N C, CHOI M J, LEE K S. Assessment of groundwater quality and contamination from uranium-bearing black shale in Goesan–Boeun areas, Korea[J]. Environmental Geochemistry and Health, 2002, 24(3): 264. [百度学术]
QIAO X, ZHENG B, LI X, et al. Influencing factors and health risk assessment of polycyclic aromatic hydrocarbons in groundwater in China[J]. Journal of Hazardous Materials, 2021, 402: 123419. [百度学术]
VIETH-HILLEBRAND A, WILKE F D H, SCHMID F E, et al. Characterizing the variability in chemical composition of flowback water-results from laboratory studies[J]. Energy Procedia, 2017, 125: 136. [百度学术]
HALUSZCZAK L O, ROSE A W, KUMP L R. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA[J]. Applied Geochemistry, 2013, 28: 55. [百度学术]
BARBOT E, VIDIC N S, GREGORY K B, et al. Spatial and temporal correlation of water quality parameters of produced waters from Devonian-age shale following hydraulic fracturing[J]. Environmental Science & Technology, 2013, 47(6): 2562. [百度学术]
BROWN V J. Radionuclides in fracking wastewater: Managing a toxic blend[J]. Environmental Health Perspectives, 2014, 122(2): A50. [百度学术]
MCMAHON P B, VENGOSH A, DAVIS T A, et al. Occurrence and sources of radium in groundwater associated with oil fields in the southern San Joaquin Valley, California[J]. Environmental Science & Technology, 2019, 53(16): 9398. [百度学术]
THAKUR P, WARD A L, SCHAUB T M. Occurrence and behavior of uranium and thorium series radionuclides in the Permian shale hydraulic fracturing wastes[J]. Environmental Science and Pollution Research, 2022, 29(28): 43058. [百度学术]
BOTHA R, LINDSAY R, NEWMAN R T, et al. Radon in groundwater baseline study prior to unconventional shale gas development and hydraulic fracturing in the Karoo Basin (South Africa) [J]. Applied Radiation and Isotopes, 2019, 147: 7. [百度学术]
ATKINS M L, SANTOS I R, PERKINS A, et al. Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia) [J]. Journal of Environmental Radioactivity, 2016, 154: 83. [百度学术]
HILL E L. Shale gas development and infant health: evidence from Pennsylvania[J]. Journal of Health Economics, 2018, 61: 134. [百度学术]
CRAWFORD P, BIGLARBIGI K, DAMMER A, et al. Advances in world oil-shale production technologies[C]//One Petro, 2008: SPE-116570-MS. [百度学术]
PAN Y, XIAO L, CHEN C, et al. Development of radio frequency heating technology for shale oil extraction[J]. Open Journal of Applied Sciences, 2012, 2(2): 66. [百度学术]
KANG Z, ZHAO Y, YANG D, et al. A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106785. [百度学术]
BENYAMMA A, BENNOUNA C, MOREAU C, et al. Upgrading of distillate fractions of Timahdit Moroccan shale oil over a sulphided NiO-MoO3γ-Al2O3 catalyst[J]. Fuel, 1991, 70(7): 845. [百度学术]
AL-ZEGHAYER Y S, SUNDERLAND P, AL-MASTRY W, et al. Activity of CoMoγ-Al2O3 as a catalyst in hydrodesulfurization: effects of Co/Mo ratio and drying condition[J]. Applied Catalysis A: General, 2005, 282(1): 163. [百度学术]
JAIN R, MAHTO V. Evaluation of polyacrylamide/clay composite as a potential drilling fluid additive in inhibitive water based drilling fluid system[J]. Journal of Petroleum Science and Engineering, 2015, 133: 612. [百度学术]
SADEGHAKYAAD M, SABBAGHI S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties[J]. Powder Technology, 2015, 272: 113. [百度学术]
AKHTARMANESH S, SHAHRABI M J A, ATASHNEZHAD A. Improvement of wellbore stability in shale using nanoparticles[J]. Journal of Petroleum Science and Engineering, 2013, 112: 290. [百度学术]
YANG X, SHANG Z, LIU H, et al. Environmental-friendly salt water mud with nano-SiO2 in horizontal drilling for shale gas[J]. Journal of Petroleum Science and Engineering, 2017, 156: 408. [百度学术]
AKYON B, MCLAUGHLIN M, HERNANDEZ F, et al. Characterization and biological removal of organic compounds from hydraulic fracturing produced water[J]. Environmental Science: Processes & Impacts, 2019, 21(2): 279. [百度学术]
ZHUANG Y, ZHANG Z, ZHOU Z, et al. Co-treatment of shale-gas produced water and municipal wastewater: removal of nitrogen in a moving-bed biofilm reactor[J]. Process Safety and Environmental Protection, 2019, 126: 269. [百度学术]
TANG P, XIE W, TIRAFERRI A, et al. Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration[J]. Water Research, 2021, 196: 117041. [百度学术]
JIANG Q, RENTSCHLER J, PERRONR R, et al. Application of ceramic membrane and ion-exchange for the treatment of the flowback water from Marcellus shale gas production[J]. Journal of Membrane Science, 2013, 431: 55. [百度学术]
ORESHKIN D V, CHEBOTAEV A N, PERFILOV V A. Disposal of drilling sludge in the production of building materials[J]. Procedia Engineering, 2015, 111: 607. [百度学术]
张翔宇, 茆明军, 赵永庆, 等. 钻井废弃泥浆固相物资源化利用[J]. 科技导报, 2012, 30(13): 49. [百度学术]
ZHANG Xiangyu, MAO Mingjun, ZHAO Yongqing, et al. Resource utilization of solid phase of drilling waste mud[J]. Science & Technology Review, 2012, 30(13): 49. [百度学术]
ZHANG A, LI M, LV P, et al. Disposal and reuse of drilling solid waste from a massive gas field[J]. Procedia Environmental Sciences, 2016, 31: 577. [百度学术]
FOROUTAN M, HASSAN M, DESROSIERS N, et al. Evaluation of the reuse and recycling of drill cuttings in concrete applications[J]. Construction and Building Materials, 2018, 164: 400. [百度学术]