摘要
为改良盐碱土壤,制备了一种隔水阻盐性能优异的超疏水颗粒材料,构建隔水阻盐材料与蓄水模式结合的盐碱地改造体系。以大漠砂为芯材,通过表面覆膜进行疏水改性,探究树脂和微纳米辅材掺量对材料疏水性、抗渗性和透气性的影响规律。利用微型土柱模拟地下水盐迁移过程,探究材料的隔水性能和阻盐性能。结果表明,在树脂、疏水碳酸钙和纳米二氧化硅掺量分别为1.0 %、0.8 %和0.2 %时,材料接触角达到153.6°,耐静水高度达230 mm,并维持良好的透气性能。在微型土柱模拟试验中,隔水阻盐材料对水分蒸发和盐分上移的抑制作用明显,蒸发抑制率为50 %~70 %,盐分抑制率大于99 %且在20次阻盐循环后维持97.5 %以上。
盐碱地在全球分布广泛,是最重要的土地资源之一。当土壤表层水溶性盐类含量超过0.1~0.2 %,或土壤表层碱化度高于5 %时,即认为该土壤属于盐碱土,土体中含有较多的盐碱成分使其具有不良的物理化学性
目前,盐碱地的改良利用已有大量研
盐碱地改良的研究发现土壤盐分转移与水分运动密切相
大漠砂,粒径0.1~0.6 mm,购于辽宁力拓硅砂;氟碳树脂,黏度410~900 mPa·s,固含量(50±1)%,购于上海氟康化工;N75型异氰酸酯,购于上海氟康化工;醋酸丁酯,分析纯,99.5 %,购于麦克林试剂;疏水型碳酸钙,粒径3~10 μm,购于济南盈鑫化工;高岭土,粒径1~5 μm,购于丰聚矿产;疏水型纳米SiO2,粒径20~70 nm,购于上海缘江化工;土壤,非盐碱土,购于淮安松裕农业科技有限公司。
将大漠砂烘干后加入搅拌锅中,加入适量氟碳树脂及异氰酸酯固化剂,搅拌均匀;在树脂固化前先后加入微米辅材(疏水型碳酸钙或高岭土)和纳米辅材疏水型纳米SiO2,搅拌均匀,待树脂固化后得到隔水阻盐材料。添加疏水型碳酸钙和高岭土的隔水阻盐材料分别记为I型和II型隔水阻盐材料。
采用EQUINOX55红外光谱仪(FTIR)对材料进行化学结构分析,将试样放入烘箱中干燥3 h后研磨至粉末状,与适量KBr均匀混合后压片测试红外光谱,光谱范围400~4 000 c

图1 疏水性能测试
Fig. 1 Hydrophobicity test of sample
目前国内尚无用于土壤阻盐性能测试的标准和装置,采用自行设计搭建的微型土柱模拟地下水盐迁移的过程(

图2 自制微型土柱试验装置
Fig. 2 Self-made mini soil-column experiment device
组建好的微型土柱放入50 ℃的烘箱模拟干旱高温环境,每隔24 h取出称重。当两次称重质量差小于0.1 g时认为水分已全部蒸发。采用DDS-307A型电导率仪测定土壤电导率,由土壤电导率计算土壤含盐量。相关计算公式如下:
(1) |
(2) |
(3) |
(4) |
(5) |
式中:E为土壤累计蒸发量,g;为土柱初始质量,g;为土柱第i天的质量,g;为实验组日蒸发率,g·
根据GB/T 33469—2016《耕地质量等级
本文将隔水阻盐材料与“改排为蓄”模式结合,由盐分扩散以及水位升降控制土体盐分含量,形成盐碱地长效改造体系,水盐迁移过程如

图3 盐碱地改造体系的水盐迁移过程
Fig. 3 Salt and water migration process in saline-alkali soil reconstruction system
隔水阻盐材料试样及其原材料的红外光谱测试结果如

图4 原材料及隔水阻盐材料的傅里叶红外光谱
Fig. 4 FTIR spectra of raw materials and waterproof and salt-blocking materials

图5 不同尺度下的隔水阻盐材料的扫描电镜图像
Fig. 5 SEM images of waterproof and salt-blocking materials at different scales

图6 微-纳米疏水结构示意图
Fig. 6 Schematic diagram of micro-nano hydrophobic structure
隔水阻盐材料的宏观性能包括疏水性、抗渗性和透气性。覆膜材料一方面包裹芯材降低表面能,另一方面黏结芯材与微纳米颗粒材料,因而树脂掺量对材料的影响至关重要。

图7 覆膜材料掺量对水接触角和耐静水高度的影响
Fig. 7 Effect of coating material contents on water contact angle and water-resistant height
维持覆膜树脂为1 %,引入不同掺量的微纳米材料后试样的接触角、耐静水高度和透气系数如

图8 微纳米辅材对隔水阻盐材料性能的影响规律
Fig. 8 Effect of micro-/nano-material contents on properties of waterproof and salt-blocking materials
综上,隔水阻盐材料具有优异的疏水性和抗渗性,并能维持良好的透气性能。综合考虑材料性能和经济性,覆膜材料最佳掺量为树脂1.0 %,疏水碳酸钙0.8 %,纳米二氧化硅0.2 %。
本文制备的盐碱地改良材料是具有良好疏水性、防渗性和透气性的颗粒材料,将其应用于盐碱地土壤耕作层,能在不影响作物生长呼吸的前提下阻隔水盐向上迁移。采用微型土柱模拟盐碱地改造体系探究其隔水阻盐性能。
三组实验组(
组别 | 质量分数/% | |||
---|---|---|---|---|
树脂 | 疏水碳酸钙 | 高岭土 | 纳米SiO2 | |
a1 | 1.0 | 0.8 | 0.2 | |
a2 | 0.9 | 0.8 | 0.2 | |
b1 | 1.0 | 0.4 | 0.2 |
注: 表中为覆膜材料所占芯材质量百分比

图9 土壤水分蒸发情况随蒸发时间的变化
Fig. 9 Soil water evaporation versus evaporation duration

图10 蒸发抑制率随蒸发历时的变化
Fig. 10 Evaporation-inhibition rate versus evaporation duration
综上,相较于对照组,实验组的水分蒸发受到明显抑制,蒸发速度平稳,无快速蒸发期,说明隔水阻盐材料对水分上移起到良好的阻隔作用,并且蒸发历时越长,蒸发抑制率越大。
隔水阻盐材料及对照组土壤的表层电导率随深度的变化见

图11 盐分阻隔效果
Fig. 11 Salt-blocking performance
取0~3 cm土层电导率平均值作为表层电导率,根据式(4)将各土层电导率换算为盐分含量,再按公式(5)计算盐分抑制率,所得结果见
组别 | 土壤盐分/(g·k | 盐分抑制率/% | |||
---|---|---|---|---|---|
0~1 cm | 1~2 cm | 2~3 cm | 平均值 | ||
原均质土壤 | 0.528 | 0.544 | 0.512 | 0.528 | |
对照组 | 37.474 | 18.807 | 9.620 | 21.967 | |
a1 | 0.555 | 0.549 | 0.545 | 0.549 | 99.900 |
a2 | 0.549 | 0.550 | 0.546 | 0.548 | 99.905 |
b1 | 0.570 | 0.529 | 0.531 | 0.543 | 99.928 |
实际场景中隔水阻盐材料会经历多次的地下水上涨‒蒸发过程,因而材料的长效阻盐性能十分关键。实验组隔水阻盐材料在多次土柱模拟试验循环后的盐分抑制率变化如

图12 隔水阻盐材料盐分抑制率随阻盐试验次数的变化
Fig. 12 Salt-blocking rate of waterproof and salt-blocking materials versus salt-blocking cycles

图13 隔水阻盐材料经历20次阻盐循环后的SEM图像
Fig. 13 SEM image of the waterproof and salt-blocking material after 20 test cycles
隔水阻盐颗粒材料以大漠砂为芯材,氟碳树脂覆膜,微纳米辅材构建表面粗糙结构。树脂起到降低表面能和黏结微纳米辅材的作用,微纳米辅材可进一步提高材料的疏水性。当树脂为1 %,疏水碳酸钙为0.8 %以及纳米SiO2为0.2 %时,隔水阻盐材料宏观性能最佳,接触角为153.6°,耐静水高度为230 mm,透气系数为220 c
作者贡献声明
张 雄:提出研究选题,设计研究方案,设计论文框架,提供技术和材料支持,审核论文。
朱国鑫:实施研究过程,调研整理文献,撰写论文,修订论文。
吕欣妍:指导实验和论文撰写,指导数据分析,修订论文。
参考文献
ROZEMA J, FLOWERS T. Crops for a Salinized World[J]. Science, 2008,322(5907):1478. [百度学术]
刘阳春, 何文寿, 何进智, 等. 盐碱地改良利用研究进展[J]. 农业科学研究, 2007,28(2):68. [百度学术]
LIU Yangchun, HE Wenshou, HE Jinzhi, et al. Progress of improvement and utilization of saline-alkali Land[J]. Journal of Agricultural Sciences, 2007,28(2):68. [百度学术]
商振芳,谢思绮,罗旺,等. 我国盐碱地现状及其改良技术研究进展[C]// 2019中国环境科学学会科学技术年会论文集(第三卷).西安:中国环境科学学会, 2019:386-395. [百度学术]
SHANG Zhenfang, XIE Siqi, LUO Wang, et al. Research progress on current status and improved technology of saline-alkali Land in China[C]// Proceedings of 2019 Annual Meeting of Science and Technology of Chinese Society of Environmental Sciences (Volume 3). Xi’an: Chinese Society of Environmental Science, 2019:386-395. [百度学术]
XIE X F, PU L J, ZHU M, et al. Spatio-temporal variability of soil salinity and sodicity in agricultural reclaimed coastal wetlands, Eastern China[J]. Archives of Agronomy and Soil Science, 2020,66(12):1639. [百度学术]
SINGH K, SINGH B, SINGH R R. Effect of land rehabilitation on physicochemical and microbial properties of a sodic soil[J]. CATENA, 2013,109:49. [百度学术]
ZHU J K. Plant salt tolerance[J]. Trends in Plant Science, 2001,6(2):66. [百度学术]
王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011,66(5):673. [百度学术]
WANG Jiali, HUANG Xianjin, ZHONG Taiyang, et al. Review on sustainable utilization of salt-affected land[J]. Journal of Geographical Sciences, 2011,66(5):673. [百度学术]
王景立, 韩楠楠, 冯伟志, 等. 东北苏打盐碱地整治工程技术与装备研究综述[J]. 农业与技术, 2018,38(23):1. [百度学术]
WANG Jingli, HAN Nannan, FENG Weizhi, et al. Review on engineering technology and equipment for soda saline-alkali land remediation in Northeast China[J]. Agriculture and Technology, 2018,38(23):1. [百度学术]
YIN A J, ZHANG M, GAO C, et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China[J]. Environmental Earth Sciences, 2016,75(18):1281. [百度学术]
JIN X B, HUANG J Y, ZHOU Y K. Impact of coastal wetland cultivation on microbial biomass, ammonia-oxidizing bacteria, gross N transformation and N2O and NO potential production[J]. Biology and Fertility of Soils, 2012,48(4):363. [百度学术]
ZHANG J H, BAI Z G, HUANG J, et al. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance[J]. Soil and Tillage Research, 2019,195:104372. [百度学术]
HUANG L B, BAI J H, CHEN B, et al. Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China[J]. Ecological Informatics, 2012,10:49. [百度学术]
唐晓倩. 木醋液和牛粪配施对盐碱土化学性质和微生物群落结构的影响[D]. 北京: 北京林业大学, 2019. [百度学术]
TANG Xiaoqian. Effect of pyroligneous acid co-applied with cow manure on chemical properties and microbial community structure in saline-alkali soil[D]. Beijing: Beijing Forestry University, 2019. [百度学术]
KUMARI A, JHA B. Engineering of a novel gene from a halophyte: Potential for agriculture in degraded coastal saline soil[J]. Land Degradation & Development, 2019,30(6):595. [百度学术]
ZHAO Y, LI Y, WANG J, et al. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils[J]. Soil and Tillage Research, 2016,155:363. [百度学术]
李慧琴, 王胜利, 郭美霞, 等. 不同秸秆隔层材料对河套灌区土壤水盐运移及玉米产量的影响[J]. 灌溉排水学报, 2012,31(4):91. [百度学术]
LI Huiqing, WANG Shengli, GUO Meixia, et al. Effect of different straw interlayer on soil water-salt movement and maize yield in Hetao irrigation district in Inner Mongolia[J]. Journal of Irrigation and Drainage, 2012,31(4):91. [百度学术]
王琳琳, 李素艳, 孙向阳, 等. 不同隔盐材料对滨海盐渍土水盐动态和树木生长的影响[J]. 水土保持通报, 2015,35(4):141. [百度学术]
WANG Linlin, LI Suyan, SUN Xiangyang, et al. Effects of salt-isolation materials on soil water and salt movement and tree growth of saline soil in a coastal region[J]. Bulletin of Soil and Water Conservation,2015,35(4):141. [百度学术]
WU L, SKAGGS T H, SHOUSE P J, et al. State space analysis of soil water and salinity regimes in a loam soil underlain by shallow groundwater[J]. Soil Science Society of America Journal, 2001,65(4):1065. [百度学术]
PFLETSCHINGER H, ENGELHARDT I, PIEPENBRINK M, et al. Soil column experiments to quantify vadose zone water fluxes in arid settings[J]. Environmental Earth Sciences, 2012,65(5):1523. [百度学术]
马增辉, 马钢. 陕西卤泊滩“改排为蓄”条件下深层土壤盐分空间格局研究[J]. 安徽农业科学, 2018,46(35):117. [百度学术]
MA Zenghui, MA Gang. Spatial distribution study on soil salinity after changing drainage to impoundment in Lubotan of Shaanxi Province[J]. Anhui Agricultural Science, 2018,46(35):117. [百度学术]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 耕地质量等级:GB/T 33469—2016[S]. 北京: 中国标准出版社, 2016. [百度学术]
The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. The National Standardization Administration of China. Quality grade of cultivated land:GB/T 33469—2016[S]. Beijing: China Standards Press, 2016. [百度学术]
河北省质量技术监督局. 盐碱地园林绿化施工规范:DB 13/T1487—011[S]. 河北: 河北省质量技术监督局, 2011. [百度学术]
Hebei Provincial Bureau of Quality and Technical Supervision. Construction code for saline-alkali land landscaping:DB 13/T1487—2011 [S]. Hebei: Hebei Provincial Bureau of Quality and Technical Supervision, 2011. [百度学术]
LI Q, GUO Z G. A Highly fluorinated SiO2 particle assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials[J]. Nanoscale, 2019,11(39):18338. [百度学术]
WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020,582(7810):55. [百度学术]
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936,28(8):988. [百度学术]
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transaction of the Faraday Society, 1944,40:546. [百度学术]