摘要
接缝是节段预制拼装桥梁的薄弱部位,为确保节段间的定位和传力,设计了钢榫键接缝。为充分完整掌握钢榫键接缝局部剪切性能,基于试验研究,结合理论分析对钢榫键接缝的抗剪机理和计算方法进行深入研究。研究结果表明:在侧限压力的作用下钢榫键接缝借助榫键和混凝土的接触受压来传递接缝间的剪力,接缝具有较高的抗剪承载力和良好的延性。结合钢榫键接缝的传力机制,构建了适用于钢榫键接缝的力学模型,揭示了钢榫键接缝的抗剪机理及破坏模式,包括:榫键剪切破坏、混凝土局部受压破坏(接触面压碎、接触面端部膨胀、劈裂破坏)、混凝土撕裂破坏。最后,建议采用钢榫键剪切破坏作为钢榫键接缝抗力设计的依据,同时应对钢榫键周围混凝土强度进行验算。
得益于标准化和工厂化的快速制造,预制节段桥梁在国内外得到广泛的应用。相对于整体结构,接缝作为预制节段结构设计时预设的不连续(纵向普通钢筋和混凝土)构
预制节段桥梁通常采用凹凸形混凝土齿键作为接缝的传力构造。自1950年来,国内外学者通过理论分析、数值模拟、试验研究已对混凝土齿键接缝的力学性能和承载能力进行了大量的科学研究。Jone
为提高接缝的抗剪承载力、延性、传力可靠性及施工便利性,科研人员基于新材料和新型剪力键接缝进行了大量研究。Beatti
同时,作者所在研究团队为简化接缝形式,改善接缝传力,提高接缝承载能力和延性,针对预制节段梁剪力键设计了方形锚头钢榫键,并对钢榫键接缝在直剪力作用下的力学性能开展了试验研
钢榫键由凸键和凹键组成,其中凸键包括锚头和跨缝齿,凹键包括锚头和承插槽,如

图1 钢榫键接缝示意
Fig.1 Schematic diagram of steel shear key joint
为研究钢榫键接缝力学性能开展试验研究,钢榫键接缝加载方案如

图2 钢榫键接缝受力模
Fig.2 The mechanical model of steel shear key joint
为进一步研究钢榫键接缝在受力过程中榫键与混凝土间的传力机制及接缝的抗剪机理,将试件进行拆分并对脱离体进行受力分析。钢榫键接缝依靠榫键锚头和混凝土试件间的接触受压来传递接缝间的剪力。而锚头集中力作用面的截面积远小于试件支承面的截面积,这将导致试件支承面混凝土处于局部受压状态。同时如

图3 凸键试件力学简化图
Fig.3 Simplified mechanical diagram
欧洲混凝土CEB-FIP MC90规范中提出局部受压模型如

图4 CEB-FIP MC90模型
Fig.4 CEB-FIP MC90 model
基于CEB-FIP MC90模型,结合钢榫键在试件中的传力路径,按照弹性理论分析可以得到钢榫键试件主应力轨迹线,如

图5 试件脱离体力学行为
Fig.5 Mechanical behavior of specimen
依据杠杆原理,并结合
(1) |
(2) |
(3) |
(4) |
式中:V为钢榫键接缝的剪力,N;F为作用于跨缝齿的接触反力,N;F1为凸键锚头与混凝土试件压区A的接触作用力,N;F2为凸键锚头与混凝土试件压区B的接触作用力,N。

图6 钢榫键尺寸示意图
Fig.6 Schematic diagram of steel shear key dimensions
下面将以混凝土试件压区、拉-压区及榫键自身为研究对象,基于试验结果,并结合理论分析,对该区域裂缝发展、破坏模式、极限强度等力学行为进行研究分析,并针对不同的破坏形态提出强度计算公式和验算公式。
如

图7 接触面混凝土压碎
Fig.7 Contact surface concrete crushed
为保证钢榫键接缝在正常使用极限状态条件下,压区混凝土仍处于弹性工作状态,应验算压区混凝土强度。集中力通过局部面积传递至支承构件,在直接传力面积下的混凝土应力高,变形大,必受到不直接传力的四周混凝土的约束,混凝土的局部抗压强度有不同程度的提高,得
(5) |
式中:为压区A混凝土产生的接触压力,N;为锚头与混凝土局部受压区接触面积,m
从
(6) |
式中:为钢榫键接缝间剪力,N;H为钢榫键锚头宽度,mm;L为钢榫键锚头长度,mm。
与锚头接触的混凝土为三轴受压的应力状态。在局部受压端面,局部受压处混凝土横向膨胀的趋势受到周围非局部受压混凝土的限制,局部受压周围的混凝土受到横向拉应力,按此拉应力达到混凝土的抗拉强度可能导致出现垂直于作用面的横向胀裂裂缝,如

图8 接触面胀裂破坏
Fig.8 Contact surface concrete spalling
为避免试件在正常使用极限状态条件下,锚头附近出现胀裂裂缝,保证试件处于弹性阶段,应对该区域应力进行验算。依据CEB-FIP MC90模型,可得
(7) |
(8) |
由三轴受压效应,得
(9) |
由,得
(10) |
考虑尺寸效应,基于混凝土抗压强度乘以系数1.3,得
(11) |
依据规范要求得
(12) |
即,为了避免锚头下混凝土出现劈裂裂缝,应确保
16 | (13) |
式中:为锚头与混凝土的接触面(加载面),m

图9 蔡绍怀模型
Fig.9 CAI Shaohuai model
如

图10 劈裂破
Fig.10 Splitting failure
为避免试件在正常使用阶段钢榫键附近拉-压区混凝土出现开裂,确保该区域混凝土处于弹性状态,应对该区域混凝土的抗拉强度进行验算。

图11 力学简化模型
Fig.11 Simplify mechanical model
依据
(14) |
(15) |
同时,结合
(16) |
式中:为计算拉应力,MPa;为混凝土抗拉强度设计值,MPa;为接缝间剪力,N;为应力场内拉应力高度,如
(17) |
凸键脱离体受力如

图12 钢榫键力学行为及破坏模式
Fig.12 The failure model of steel shear key
基于
(18) |
式中:为钢榫键跨缝齿截面应力,MPa;为接缝面钢榫键的数量,(1,2,3…);为钢榫键跨缝齿截面积,;为节段梁接缝面在最不利工况条件下的截面剪力,N;为钢榫键材料抗剪强度设计值,MPa。
依据San Venient原理和

图13 多榫键力学行为
Fig.13 Mechanical behavior of multiple key
因此,
(19) |
由于杠杆效应,锚头附近形成方向相反的作用力、,如

图14 凸键试件力学行为
Fig.14 Mechanical behavior of convex key specimen

图15 试件破坏模
Fig.15 DS3 and DS7 failure model
为避免试件在正常使用阶段钢榫键附近混凝土出现撕裂,确保该区域混凝土处于弹性状态,应对该区域混凝土的抗拉强度进行验算。
(20) |
式中:L为锚头的长度,mm;H为锚头的宽度,mm;为试件的宽度,mm;为混凝土抗拉强度设计值,MPa;为接缝间的剪力,N;为箍筋抗拉强度设计值,MPa;为箍筋截面积,m
试件在局部受压条件下可能出现混凝土端面压碎、劈裂破坏,结构配筋设计时应根据强度需要在局压区端面混凝土内及劈裂裂缝路径设置加强筋(平行于锚头面布置)。因此,分别在
(21) |
(22) |
(23) |
(24) |
16 | (25) |
式中:为钢榫键接缝抗剪承载力,N;H为钢榫键锚头宽度,mm;L为钢榫键锚头长度,mm;为混凝土抗压强度设计值,MPa;为混凝土局部抗压强度的提高系数,保守计算时可取;为试件的宽度,mm;为混凝土抗拉强度设计值,MPa;为接缝面钢榫键的数量,(1,2,3…);为钢榫键跨缝齿截面积,m
综上所述,可得钢榫键接缝抗力计算如下:
(26) |
(27) |
式中:为钢榫键提供的抗力,按
(1)获得钢榫键接缝的抗剪机理:钢榫键接缝在侧限力的作用下依靠榫键和混凝土的接触受压来传递接缝间的剪力,接缝具有较高的抗剪承载力和良好的延性。
(2)结合钢榫键接缝的传力机制及试验结果,构建了钢榫键接缝的力学模型,并对接缝的抗剪机理和破坏模式进行了理论分析。获得了钢榫键接缝的破坏模式包括:端部混凝土胀裂、端面混凝土压碎、混凝土劈裂破坏、混凝土撕裂破坏及钢榫键直接剪切破坏。
(3)提出钢榫键接缝应采用榫键剪切破坏进行抗力设计,但须对榫键周围混凝土进行强度验算。钢榫键接缝抗力可按剪切实用公式计算,钢榫键材料和跨缝齿直径均是影响钢榫键接缝承载力的关键因素。
(4)钢榫键干接缝抗力由钢榫键和接缝间摩擦力提供,多榫键接缝应考虑榫键间距对接缝力学性能的影响。
作者贡献声明
邹宇:完成试验实施、理论公式推导,论文整体的撰写并修改;
贾勤龙:试验实施、数据采集;
徐栋:整体思路构架,指导论文撰写与修改;
宋冰泉:提出研究需求,论文审阅及定稿;
申洛岑:研究选题,提供研究思路;
谢正元:进行钢榫键设计、提供咨询;
戚永超:试验实施、数据采集。
参考文献
ZHOU X, MICKLEBOROUGH N, LI Z. Shear strength of joints in precast concrete segmental bridges [J]. ACI Structural Journal,2005, 102(1):3. [百度学术]
孙雪帅. 预制拼装桥梁节段间接缝抗剪性能试验研究 [D]. 南京:东南大学, 2015. [百度学术]
SUN Xueshuai. Experimental study on shear behavior of joints in precast segmental bridges [D]. Nanjing: Southeast University,2015. [百度学术]
TURMO J, RAMOS G, APARICIO A. Shear strength of dry joints of concrete panels with and without steel fibres: Application to precast segmental bridges [J].Engineering Structures,2006, 28(1):23. [百度学术]
JONES LL. Shear test on joints between precast post-tensioned units [J].Magazine of Concrete Research,1959, 11(31):25. [百度学术]
BUYUKOZTURK O, BAKHOUM M M, BEATTIE S M. Shear behavior of joints in precast concrete segmental bridges [J].Journal of Structural Engineering,1990, 116(12):3380. [百度学术]
AASHTO. Guide specifications for design and construction of segmental concrete bridges [M]. Washington DC; AASHTO ,1999. [百度学术]
ISSA M A, ABDALLA H A. Structural behavior of single key joints in precast concrete segmental bridges [J].Journal of Bridge Engineering,2007,12(3):315. [百度学术]
ROMBACH G, Precast segmental box girder bridges with external prestressing-design and construction[D]. Hambug: Technical University of Hamburg and Harburg, 2002. [百度学术]
JIANG H, CHEN L, MA Z J, et al. Shear behavior of dry joints with castellated keys in precast concrete segmental bridges [J].Journal of Bridge Engineering,2015, 20(2):04014062. [百度学术]
SMITTAKORN W, MANAVITHAYARAK P, SUKMOUNG P. Improvement of shear capacity for precast segmental box girder dry joints by steel fiber and glass fiber [C]// Proceedings of the MATEC Web of Conferences. [S.l.]: EDP Sciences,2019:04006. [百度学术]
SHAMASS R, ZHOU X, ALFANO G. Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges [J].Journal of Bridge Engineering,2015, 20(6):04014084. [百度学术]
JIANG H, YING C, LIU A, et al. Effect of high-strength concrete on shear behavior of dry joints in precast concrete segmental bridges [J].Steel Composite Structures,2016, 22(5):1019. [百度学术]
ALCALDE M, CIFUENTES H, MEDINA F. Influence of the number of keys on the shear strength of post-tensioned dry joints [J].Materiales De Construccion,2013, 63(310):297. [百度学术]
AHMED G H, AZIZ O Q. Stresses, deformations and damages of various joints in precast concrete segmental box girder bridges subjected to direct shear loading [J].Engineering Structures,2020, 206:110151. [百度学术]
AHMED G H., AZIZ O Q. Shear behavior of dry and epoxied joints in precast concrete segmental box girder bridges under direct shear loading [J].Engineering Structures,2019, 182:89. [百度学术]
MORETON A J. Tests of epoxy-glued joints for a segmental precast bridge deck [J].International Journal of Adhesion Adhesives,1982, 2(2):97. [百度学术]
MOUSTAFA S E. Ultimate load test of a segmentally constructed prestressed concrete I-beam [J]. PCI Journal,1974, 19(4):54. [百度学术]
BEATTIE S M. Behavioral improvements in segmental concrete bridge joints through the use of steel fibers [M].Boston : Massachusetts Institute of Technology,1989. [百度学术]
JIANG H, WEI R, JOHN Ma Z, et al. Shear strength of steel fiber-reinforced concrete dry joints in precast segmental bridges [J].Journal of Bridge Engineering,2016, 21(11):04016085. [百度学术]
姜海波, 王添龙, 肖杰, 等.预制节段钢纤维混凝土梁干接缝抗剪性能试验[J].中国公路学报,2018,31(12):37. [百度学术]
JIANG Haibo,WANG Tianlong,XIAO Jie,et al. Test on shear behavior of dry joints in precast steel fiber reinforced concrete segmental bridges[J].China Journal of Highway and Transport, 2018, 31(12): 37. [百度学术]
VOO YL, FOSTER SJ, VOO CC. Ultrahigh-performance concrete segmental bridge technology: toward sustainable bridge construction [J].Journal of Bridge Engineering,2015, 20(8):B5014001. [百度学术]
KIM YJ, CHIN WJ, JEON SJ. Interface Shear Strength at Joints of Ultra-High Performance Concrete Structures [J].International Journal of Concrete Structures Materials,2018, 12(6):767. [百度学术]
袁爱民, 符俊冬, 程磊科, 等.节段预制桥梁胶接缝配筋剪力键剪切性能试验[J]. 中国公路学报,2018,31(12):81. [百度学术]
YUAN AM,FU JD,CHENG LK,et al. Experiment of shear performance of epoxy resin joints with reinforced keys in precast concrete segmental bridge[J]. China Journal of Highway and Transport,2018,31(12):81. [百度学术]
SANGKHON A, PISITPAIBOOL C. Shear strength test of joint with different geometric shapes of shear keys between segments of precast segmental bridge [J]. International Transaction Journal of Engineering Management Applied Sciences Technologies,2017, 8(1):23. [百度学术]
GOPAL BA, HEJAZI F, HAFEZOLGHORANI M, et al. Numerical analysis and experimental testing of ultra-high performance fibre reinforced concrete keyed dry and epoxy joints in precast segmental bridge girders [J].International Journal of Advanced Structural Engineering,2019, 11(4):463. [百度学术]
邹宇, 柳惠芬, 徐栋, 等.预制节段桥梁钢榫键接缝直剪力学性能试验 [J].同济大学学报(自然科学版),2022,50(2):212. [百度学术]
ZOU Y, LIU H F, XU D, et al. Experimental study of steel keyed joints in precast concrete segmental bridges under direct shear loading[J]. Journal of Tongji University:Natural Science,2022,50(2):212. [百度学术]
邹宇, 徐栋, 宋冰泉, 等.预制节段桥梁钢榫键接缝受力特性 [J].同济大学学报(自然科学版),2021,49(7):986. [百度学术]
ZOU Y, XU D, SONG BQ, et al. Mechanical characteristics of steel keyed joints of precast segmental bridge[J]. Journal of Tongji University:Natural Science,2021,49(7):986. [百度学术]
邹宇, 端木祥永, 宋冰泉, 等.预制节段桥梁钢榫键接缝剪切性能及工法设计[J].土木工程学报,2022,55(10):62. [百度学术]
ZOU Y, DUANMU X Y, SONG B Q, et al. Shear properties and construction design of steel shear key in precast segmental bridges[J]. China Civil Engineering Journal, 2022,55(10):62. [百度学术]
中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范 [M]. 北京: 人民交通出版社. 2018. [百度学术]
Ministry of Transport of the People's Republic of China. Specifications for design of highway reinforced concrete and prestressed concrete bridges andconcrete bridges and culverts[M]. Beijing:People’s Communications Press,2015. [百度学术]
TASSIOS T P . Concrete‐to‐concrete friction[J].Journal of Structural Engineering,1987, 113(4):832. [百度学术]