摘要
硫酸盐渍土地区现浇结构广泛存在多源-多离子耦合腐蚀,利用砂浆内掺M
现浇结构整体性好,方便就地取材且尺寸选择灵活,被广泛应用于道路、桥梁、隧道及桩基等工程中。然而,由于现浇结构浇筑时就与周围环境接触,更易受到外界环境的影响而产生劣
盐湖及盐渍土地区混凝土结构腐蚀往往伴随着多种腐蚀性离子的耦合作用,不同腐蚀性离子的耦合作用不仅仅是简单的叠
混凝土结构的内源腐蚀问题在实际工程中也极为常
国内外学者已就硫酸盐及多离子耦合腐蚀进行了深入的研究,然而现有研究多针对预制构件以及外源腐蚀展开,对于盐湖及盐渍土地区广泛存在的现浇结构多源-多离子耦合腐蚀研究则较少。本文采用内掺腐蚀性离子模拟内源腐蚀,将试样置于不同的腐蚀环境模拟外源腐蚀。此外,腐蚀性离子对混凝土结构的腐蚀作用集中在其对水泥石部分的影响。因此,为了减少粗骨料离散性问题的干扰,本文采用砂浆试样对现浇结构的腐蚀劣化机理展开研究。分别测定试样的孔隙分布、质量尺寸、抗折及抗压强度,以及不同深度的硫酸盐浓度,同时结合SEM-EDS、XRD及TG/DTG等方法,对试样的微观结构及矿物成分进行对比分析,以期明确多源-多离子耦合腐蚀作用下现浇结构的硫酸盐腐蚀机理。本文研究将为盐湖、盐渍土及海洋地区现浇结构的设计、施工及维护,以及后续现浇结构抗多源腐蚀劣化技术的研究提供一定的理论基础。
本试验采用唐山冀东水泥股份有限公司生产的P.O.42.5普通硅酸盐水泥,细骨料采用厦门艾思欧标准砂有限公司生产的标准砂,其粒径范围在0.08~2 mm,用蒸馏水来拌和水泥砂浆,水泥的化学成分见
化学成分 | Al2O3 | SiO2 | SO3 | Cl | TiO2 | Fe2O3 | Na2O | K2O | MgO | CaO |
---|---|---|---|---|---|---|---|---|---|---|
质量分数/% | 4.14 | 20.45 | 2.73 | 0.027 | 0.339 | 2.85 | 0.702 | 0.44 | 1.63 | 60.71 |
水灰比 | 水/(kg· | 水泥/(kg· | 砂/(kg· |
---|---|---|---|
0.5 | 1 | 2 | 3 |
试验针对现浇结构的腐蚀过程设计了专门的浇筑试模,如

图1 设计的试模(40 mm×40 mm×160 mm)
Fig.1 Designed mold (40 mm×40 mm×160 mm)
考虑到盐湖、盐渍土及海洋地区的高含盐量以及现浇结构在浇筑施工过程中可能引入环境中的腐蚀性离子,内源腐蚀通过在拌和所用的蒸馏水中内掺3%(质量分数)含腐蚀性离子的盐来实
浸泡在蒸馏水中的试样 | 浸泡在Na2SO4中的试样 | 内掺的腐蚀性离子 |
---|---|---|
Z⁃N | L⁃N | 无 |
Z⁃S | L⁃S |
3% SO |
Z⁃SC | L⁃SC |
3% SO |
Z⁃SM | L⁃SM |
3% SO |
Z⁃SMC | L⁃SMC |
3% SO |
取出不同腐蚀时间的试样,放入烘箱中60 ℃烘干处理72 h。使用冲击钻和相应的取粉工具通过控制钻孔深度来取得距试样表面2.5 mm、7.5 mm、12.5 mm、17.5 mm和22.5 mm处的粉末。将钻头依次推进5 mm,在不同深度处各收集1组粉末。称取所得粉末0.5 g溶解于50 mL蒸馏水中静置48 h,以确保粉末中的所有可溶性盐均已溶解,过滤不同粉末的溶解溶液并采用滴定法测定硫酸盐浓度。
为研究腐蚀早期试样的孔隙变化规律,测定腐蚀28d后试样的孔隙特性且结果如

图2 试样的孔隙分布
Fig.2 Pore distribution of specimens

图3 腐蚀产物诱导损伤机理
Fig.3 Mechanism of damage induced by corrosion products
不同腐蚀时间试样的表观如

图4 不同腐蚀时间试样的表观
Fig.4 Appearance of specimens with different corrosion times
较早期腐蚀而言,试样在180d后出现了明显的劣化现象。在内-外源耦合腐蚀作用下,L-S、L-SC、L-SM和L-SMC的表面已出现明显的裂缝。值得注意的是,内掺M
不同腐蚀时间试样的尺寸及质量如

图5 试样的质量及尺寸变化
Fig.5 Mass and size changes of specimens
由
由
不同腐蚀时间试样的抗折及抗压强度如

图6 试样的抗折强度变化
Fig.6 Flexural strength changes of specimens

图7 试样的抗压强度变化
Fig.7 Compressive strength changes of specimens
由
为研究内-外源耦合腐蚀的长期影响作用,试样长期的抗折强度如
如前文所述,不同种类的内源腐蚀性离子对试样早期的内部孔隙结构均具有较大影响,且影响会一直持续到结构破坏,试样的抗折强度又往往对孔隙结构的发育体现出高度的敏感性。在腐蚀早期,由于外源SO
由
由
对比试样长期抗折强度及抗压强度的结果,可以发现内源腐蚀对试样抗折强度的发展影响更显著。无论试样处于哪种外部腐蚀环境,内源腐蚀导致的抗折强度损失均远大于抗压强度的损失,特别是在内-外源耦合腐蚀作用下。
不同腐蚀时间试样不同深度的SO

图8 试样不同深度硫酸盐浓度的变化
Fig.8 Sulfate concentration changes at different depths of specimens
由
取腐蚀28d及180d后试样的碎块分别进行SEM微观结构观测及EDS能谱分析,所得结果见

图9 试样的腐蚀产物
Fig.9 Corrosion products of specimens

图10 腐蚀产物的EDS分析结果
Fig.10 EDS analysis results of corrosion products
由
不同腐蚀时间试样的XRD、TG/DTG分析结果见

图11 不同腐蚀时间试样的XRD分析结果
Fig.11 XRD analysis results of specimens with different corrosion times

图12 28d后试样的TG/DTG分析结果
Fig.12 TG/DTG analysis results of specimens after 28 days
由
(1) |
由
本文采用模拟腐蚀的方法,模拟了现浇结构在硫酸盐渍土地区多源-多离子耦合腐蚀过程。通过测定试样在不同腐蚀时间的孔隙分布、物理力学性质以及不同深度处的硫酸盐浓度,并采用SEM-EDS、XRD及TG/DTG等测试技术观测试样的微观结构及矿物成分变化。本文主要得出以下结论:
(1)盐渍土地区的现浇结构必须避免由材料及施工过程引起的内源腐蚀问题,内源C
(2)内源腐蚀在早期导致的内部结构劣化严重影响了试样抗折强度的发展,无论外部腐蚀环境如何,遭受内源腐蚀试样的抗折强度均远低于没有内掺腐蚀性离子的试样;无外部腐蚀环境时,360d后试样的抗折强度降低了54%~57%;在外源硫酸盐的腐蚀作用下,360d后试样的抗折强度降低了50%~67%。
(3)内源M
(4)表层的M
作者贡献声明
赵高文:指导试验设计,论文写作与修改;
王卓:试验数据分析,论文写作与修改;
胡亦奇:参与试验研究,整理数据;
徐志军:数据分析;
郭梦真:数据分析,图像处理;
李镜培:指导试验规划,论文修改。
参考文献
ZHUTOVSKY S, KOVLER K. Influence of water to cement ratio on the efficiency of internal curing of high-performance concrete[J]. Construction and Building Materials, 2017, 144: 311. [百度学术]
刘超, 姚羿舟, 刘化威, 等. 硫酸盐干湿循环下再生复合微粉混凝土的劣化机理[J]. 建筑材料学报, 2022,25(11):1128. [百度学术]
LIU Chao, YAO Yizhou, LIU Huawei, et al. Deterioration mechanism of recycled composite powder concrete under dry-wet cycles of sulfate[J]. Journal of Building Materials, 2022,25(11):1128. [百度学术]
左义兵, 廖宜顺, 叶光. 盐耦合侵蚀下碱矿渣水泥相演变的热力学模拟[J]. 建筑材料学报, 2023, 26(1): 7. [百度学术]
ZUO Yibing, LIAO Yishun, YE Guang. Thermodynamic modelling of phase evolution in alkali-activated slag cement upon combined attack of salts[J]. Journal of Building Materials, 2023, 26(1): 7. [百度学术]
DU J M, TANG Z Y, LI G, et al. Key inhibitory mechanism of external chloride ions on concrete sulfate attack[J]. Construction and Building Materials, 2019, 225: 611. [百度学术]
朱效宏, 李青, 陈平, 等. 硫酸盐侵蚀条件下C–(A)–S–H组成-结构演化的量化分析[J]. 硅酸盐学报, 2021, 49(5): 901. [百度学术]
ZHU Xiaohong, LI Qing, CHEN Ping, et al. Composition and nano-structure of C-(A)-S-H gels in cement pastes after sulphate attack[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 901. [百度学术]
WU M, ZHANG Y S, JI Y S, et al. A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature[J]. Construction and Building Materials, 2020, 243: 118279. [百度学术]
NEVILLE A. The confused world of sulfate attack on concrete[J]. Cement and Concrete Research, 2004, 34(8): 1275. [百度学术]
ZHAO G W, LI J P, HAN F, et al. Sulfate-induced degradation of cast-in-situ concrete influenced by magnesium[J]. Construction and Building Materials, 2019, 199: 194. [百度学术]
CAMPOS A, LOPEZ C M, BLANCO A, et al. Effects of an internal sulfate attack and an alkali-aggregate reaction in a concrete dam[J]. Construction and Building Materials, 2018, 166: 668. [百度学术]
COLMAN C, BULTEEL D, THIERY V, et al. Internal sulfate attack in mortars containing contaminated fine recycled concrete aggregates[J]. Construction and Building Materials, 2021, 272: 121851. [百度学术]
张永康, 张田, 张荣飞,等. 高盐渍土地区某铁路路基填料选择研究[J]. 铁道工程学报, 2016, 33(9): 10. [百度学术]
ZHANG Yongkang, ZHANG Tian, ZHANG Rongfei,et al. Research on the selection of a railway subgrade filler in high saline soil region[J]. Journal of Railway Engineering Society, 2016, 33(9): 10. [百度学术]
PRADHAN B, BHATTACHARJEE B. Rebar corrosion in chloride environment[J]. Construction and Building Materials, 2011, 25(5): 2565. [百度学术]
黎玉婷, 张肖峰, 叶盛. 高原地区盐渍土硫酸盐强腐蚀性环境防腐设计[J]. 南方能源建设, 2018, 5(3): 102. [百度学术]
LI Yuting, ZHANG Xiaofeng, YE Sheng. Anti-corrosion design of concrete structure in sulfate strong corrosive environment in saline soil in plateau area[J]. Southern Energy Construction, 2018, 5(3): 102. [百度学术]
HAN S, ZHONG J, YU Q, et al. Sulfate resistance of eco-friendly and sulfate-resistant concrete using seawater sea-sand and high-ferrite portland cement[J]. Construction and Building Materials, 2021, 305: 124753. [百度学术]
李田雨, 王维康, 李扬涛,等. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101. [百度学术]
LI Tianyu, WANG Weikang, LI Yangtao, et al. Corrosion failure mechanism of ultra-high-performance concretes prepared with sea water and sea sand in an artificial sea water containing sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1101. [百度学术]
李闯, 范颖芳, 王耀宇,等. 钢筋-煤系偏高岭土水泥砂浆抗氯盐-硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(5): 447. [百度学术]
LI Chuang, FAN Yingfang, WANG Yaoyu, et al. Corrosion resistance to chloride and sulfate salt attack of steel bar-cement mortar containing coal metakaolin[J]. Journal of Building Materials, 2022, 25(5): 447. [百度学术]
杨永敢, 康子豪, 詹炳根,等. 初始损伤混凝土的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(12): 1255. [百度学术]
YANG Yonggan, KANG Zihao, ZHAN Binggen, et al. Sulfate resistance of concrete with initial damage[J]. Journal of Building Materials, 2022, 25(12): 1255. [百度学术]
刘飞禹, 赵川, 孙宏磊, 等. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究[J]. 岩石力学与工程学报, 2022, 41(8):1680. [百度学术]
LIU Feiyu, ZHAO Chuan, SUN Honglei, et al. Study on the effect of salt content on the shear characteristics of the interface between sodium sulphate saline soil and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8):1680. [百度学术]
JIANG H, HAN J, REN L, et al. Study of early-age performance of cementitious backfills with alkali activated slag under internal sulfate attack[J]. Construction and Building Materials, 2023, 371: 130786. [百度学术]
KUMAR R, BHATTACHARJEE B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33(1): 155. [百度学术]
VEDALAKSHMI R, SARASWATHY V, YONG A K. Performance evaluation of blended cement concretes under MgSO4 attack[J]. Magazine of Concrete Research, 2011, 63(9): 669. [百度学术]
KUNTHER W, LOTHENBACH B, SCRIVENER K L. On the relevance of volume increase for the length changes of mortar bars in sulfate solutions[J]. Cement and Concrete Research, 2013, 46: 23. [百度学术]
HUANG Q, ZHU X, XIONG G, et al. Will the magnesium sulfate attack of cement mortars always be inhibited by incorporating nanosilica? [J]. Construction and Building Materials, 2021, 305: 124695. [百度学术]
SANTHANAM M, COHEN M D, OLEK J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack[J]. Cement and Concrete Research, 2003, 33(3): 325. [百度学术]
关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D]. 西安: 长安大学, 2012. [百度学术]
GUAN Bowen. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D]. Xi’an, Chang’an University, 2012. [百度学术]
DONG Q, ZHENG H, ZHANG L, et al. Numerical simulation on diffusion-reaction behavior of concrete under sulfate-chloride coupled attack[J]. Construction and Building Materials, 2023, 405: 133237. [百度学术]
JIN H, LIU J, ZHONG D, et al. Experimental study on chloride ion diffusion behavior and microstructure in concrete under alternating ambient humidity conditions[J]. Construction and Building Materials, 2023, 401: 132886. [百度学术]
LIU Z Q, DENG D H, DE SCHUTTER G, et al. The effect of MgSO4 on thaumasite formation[J]. Cement and Concrete Composites, 2013, 35(1): 102. [百度学术]
HUANG Q, ZHENG W, XIAO X, et al. A study on the salt attack performance of magnesium oxychloride cement in different salt environments[J]. Construction and Building Materials, 2022, 320: 126224. [百度学术]
SANTHANAM M, COHEN M D, OLEK J. Sulfate attack research—whither now? [J]. Cement and Concrete Research, 2001, 31(6): 845. [百度学术]