摘要
介绍了植被模型的不同考虑方式,分别从水流阻力、床面阻力、植被消长等方面展开讨论。基于工程尺度和实验室尺度水沙动力数学模型的研究,综述了植被影响下的流速、紊动能、拟序结构,不同波浪形态的传播特征以及悬沙浓度、地形演变等相关的研究进展。结合大量数学模型研究,提出了未来的研究趋势。
海草、盐沼、红树林等沿海植被系统是地球生态的宝贵组成部分,它们可以减缓水流、衰减波浪、稳定海床、改善水质等,并能够给丰富的生物资源提供栖息地,在河口生态系统抵御风暴中发挥着关键作用。受到人类活动和气候变化的影响,基于植被的以海岸保护为核心的生态防护工程受到极大的关

在基于植被的海岸保护解决方案中,对植被‒水动力‒泥沙相互作用机制甚至包含风沙输运过程的研究尤为重要,研究方法包括物理模型、数学模型、现场观测、理论分析等,数学模型往往以理论分析为基础,并可有效弥补物理模型和现场观测中的不足,对于实验室尺度数学模型研究,则通常围绕理论和物理模型展开。本文针对数学模型方法相关研究展开综述,包括植被模型的发展及不同尺度数学模型的研究现状。
由于真实环境的植被刚度和形态千差万别,因此对于含植被的海岸水沙变化特征的数学模型研究,一般需基于真实情况的概化植被模型。一维、二维数学模型研究中使用的植被模型局限性较小,对于不同技术目标及动力条件可用不同植被模型,而对于三维数学模型研究来说,则需更精细化的植被模型与之匹配。
如

图1 植被模型发展简图
Fig. 1 Schematic diagram of vegetation model development
对于柔性植被而言,Wang
水流阻力还可以通过将植被间接定义为不同特征的多孔介质模型来反映。目前多孔介质区域模拟植被覆盖时,一般假设多孔介质均匀、各向同性,且多孔介质上部边界为刚性可渗,需要设置的参数主要有多孔介质区域厚度、孔隙率、渗透系数和惯性阻力系数
如
除了从植被引起的阻力方面考虑以外,植被受水沙动力影响后的连根拔起、掩埋等特征的考虑也受到关注,通过将植被区冲淤变化、水位水深等水沙动力或水文条件要素与植被性状、生物量,甚至植被种类链
工程尺度模型一般指区域性或长时间尺度的数学模型。对于此类模型而言,目前人们往往更关注植被带来的整体水沙动力效应。随着模型的改进及计算软硬件设施性能的提升,植被摆动等效应也逐渐通过参数化考虑在内,但广泛应用于工程尺度研究中的还是较简便的植被模型,一方面能够模拟出预想的效果,另一方面也能够节约计算成本。使用的软件平台包括Delft-3D、ROMS、SWAN、XBeach等。该尺度模型包括区域内动力地貌变化的平面二维模型,对于海滩剖面变化的研究则可使用基于XBeach等的一维模型。
生态地貌学或生物动力地貌学是一门研究生物和非生物过程之间的反馈如何塑造地球表面的新学科。植被是生态系统的基本组成元素之一,他们对于地形地貌的演变发挥着重要的作用。不同类型植被生长在不同地理区域,比如盐沼植被和红树林,因此具有不同生产力和稳定机制,但两种类型植被对海岸系统稳定性的影响相似,他们控制着盐沼平台的高程,即潮上带的平
基于应用较为广泛且相对成熟的刚性群杆假设,可较容易地实现对植被高度、茎干直径、密度及阻力系数等参数的设置,因此对于植被群落的季节性变化可通过这些参数定量化描述。针对海湾水沙动力,Zhu
除此之外,为了更精确地考虑植被姿态相关的影响,Beudin
波浪尤其是台风浪作用下,对于单类型植物群影响的海岸,一般情况下随着植被区垂岸方向宽度、植被高度和植被密度的增加,波高衰减增

图2 植被组合优化设计模
Fig. 2 Optimization design model of combined vegetation
经济效益方面,湿地在风暴事件中每年平均为每个河口节省270万美元的损失。盐沼可在不同空间和时间尺度上在减轻河口风暴洪水及相关成本方面发挥广泛的作用,包括局部波浪衰减以及河口尺度的风暴潮衰减。其中,风暴潮衰减占主导地位:在有掩护的部分河口湿地,平均减少洪水灾害17%,而在波浪暴露的河口湿地附近,平均减少洪水灾害8%。因此,生态系统服务模型必须整合跨尺度运作的过程应对风暴驱动的沿海洪水日益增长的威胁,否则可能严重低估基于自然的解决方案的价
实验室尺度模型一般是以理论模型研究为基础,模型区域一般为实际波流水槽尺寸且需用该物理试验数据进行验证,使用的软件或开源平台包括OpenFOAM、FLUENT、FLOW-3D、XBeach、NHWAVE、SWASH等。该尺度模型包括水槽沿程动力及剖面变化的一维数学模型、研究整个水槽平面区域或垂向动力变化的平面或立面二维模型,以及更精细化水流拟序结构的三维模型。
潮流作用下的研究内容一般以刚性群杆假设的植被模型为基础,多集中在水流结构上,也有最新的研究开始针对水流作用下植被的生长发展过程,且多数研究集中于单一类型植物(群)。
流速结构分布上,挺水植被区上游流态比较均匀,垂向分布符合对数分布,而植被间隙区流速在下游达到最大。紊动方面,含不同密度植被水流的湍流动能和湍流动能耗散率空间分布规律一致,并表现为植株尾流区的湍流动能耗散率较
与挺水植被类似,沉水植被的相关研究一般集中在流速和紊动变化规律上。李绍武
波浪作用下的水流运动具有往复性,对于刚性植被而言,仍可使用刚性群杆假设来进行研究,而对于柔性较大植被而言,植被在波浪作用下必然会产生复杂的摆动,因此,波浪作用下的数学模型往往对柔性植被的摆动影响考虑得更多。
规则波不管是对于物理模型试验还是数学模型来说都相对基础。首先,如果验证数据的物理模型中植被刚柔性影响不大,数学模型中基本上直接采用刚性群杆假设。一般情况下,植被相对淹没度(水深/植被高度)或波浪周期与波浪衰减负相关,而植被密度与波浪衰减正相关,三者对消浪效果的影响都是单调的,但波浪周期对波浪衰减影响的敏感程度较
实际环境中的植被多数为柔性植被,尤其是沉水植被。Hemavathi
基于XBeach波浪模型,Yin
以上针对柔性植被弯曲的研究,基本上都是基于悬臂梁理论的较小幅度摆动情况,对于类似于鞭状摆动的柔性极大的植被的研究还较少。基于N-pendula植被模型,Familkhalili
实际海浪是不规则的,与规则波类似,随着周期的减小和波高的增大,植物引起的波能衰减率增
在全球气候变化及地质灾害频发的背景下,引发海啸波的频次也越来越多,而孤立波成为研究海啸波的代表性波型。随着入射波高、植被密度和植被淹没高度的增加,波浪传播中波面壅高程度、波高衰减率、波能损耗率都愈加强

图3 堤顶越浪流厚度及速度定义示
Fig. 3 Definition of overtopping layer thickness and flow velocity on cres
使用孤立波模拟海啸波的传统方法,与实际的海啸波在时空尺度上(波周期和波长)有着较大区别,为了得到更真实更准确的结果,Qu
实际海岸带环境中波浪与潮流耦合相互作用,且其方向多变,共生水流较复杂,因此,研究植被在波流耦合中的波浪衰减作用对准确理解海岸带植被保护效率至关重要,同时对于了解海岸植被系统的水动力、沉积和交换过程也具有重要指导意义。多数实验室尺度模型中考虑植被作用后仅停留在水动力研究上,较少真正添加泥沙项、考虑植物对泥沙的影响,而湿地植被在海岸泥沙输运特征中却扮演着重要角色。
不少学者进行了物理模型试验相关的研究,但数学模型方面的相关研究还较少。Yin
首先,在泥沙悬浮研究方面,不同于传统的希尔兹数模型中泥沙悬浮与平均流速相关,Lou
本文首先介绍了植被模型的不同考虑方式,然后分别基于工程尺度、实验室尺度数学模型方法的研究,从海岸植被对水流结构、波浪传播、地形演变等的影响方面进行了全面综述。
植被模型方面,就植被引起的阻抗而言可从水流阻力与床面阻力两个方面考虑,目前应用较广泛的为刚性群杆假设,随着理论模型研究的发展和计算软硬件设施的快速更新,越来越多的学者开始注重真实条件下植被随水流的摆动过程,从基于悬臂梁理论的小幅度摆动研究发展到可模拟倒伏状大幅度摆动的N-pendula模型。从水沙条件对植被的影响方面考虑,则需要关注植被的连根拔起、埋没、生长及衰退等因素,不少研究将水沙动力特性(临界冲淤水深、临界剪切应力、临界流速等)与植被的消长(密度等)联系起来。
对于工程尺度模型研究,一方面体现在植被对海岸地貌形态演化趋势的影响及在海岸灾害性事件中的作用,包括考虑海平面上升或风沙输运过程的水沙特征,灾害性事件后的植被经济效益评估等。另一方面,则是通过改变概化植被模型参数模拟植被季节性变化、植被类型及组合等,研究其对水沙动力的影响。
实验室尺度模型方面,主要总结的是水槽尺度方面的研究。潮流作用下区分了挺水植被、沉水植被等不同植被类型,但主要研究内容都是水流结构特征,包括流速、紊动能、拟序结构等。波浪作用下,以规则波、不规则波、海啸波、聚焦波等不同波浪类型为要素分别对波浪衰减、爬高、越浪等方面展开综述,最后对潮流的影响进行了简要介绍。波浪作用下水流具有往复运动特性,对于柔性植被的摆动影响尤为重要,因此很多学者将植被的摆动对波浪衰减的作用或植被摆动引起的阻力特性的变化作为研究重点。对波流耦合、泥沙输运方面的水槽尺度的研究相对较少。
植被模型方面,柔性植被的摆动尤其是在波浪作用下的复杂运动仍将是未来关注的一个重点;对于植被茎叶‒茎叶间相互重叠遮蔽影响的作用机制研究、植被不同假设模型的优化组合效应(比如刚性群杆假设与多孔介质假设组合)尚需进一步拓展;植被的消长(包括短时间尺度及跨年尺度时间窗口的可变性)与水沙动力(包括临界床面剪切应力、临界流速、临界水深、临界冲淤厚度等)之间的相互作用机理也是未来仍需进一步展开的方向,需综合考虑地形、泥沙、植被自身生长规律、地下水、风等因素,建立更全面的植被消长模型。工程尺度模型方面,植被密度空间梯度变化、植被斑块的分辨率、植被生长动态过程及生物积累等因素仍需进一步完善;在模型垂向分层、短期极端事件及植被组合作用的考虑上也尚有欠缺。就实验室尺度模型而言,植被使湍流存在明显各向异性特征,各向异性数值模拟研究仍需深入开展;部分研究中经率定设置的参数应进一步提出经验公式,对于已经采用的经验公式,则仍需更多现场观测或物理模型试验数据的验证与评估,并包含更广的参数范围;波流耦合方面的研究集中于波流同向或反向条件,而实际环境往往是波流斜交,因此,波流耦合方面的研究仍需进一步拓宽;与泥沙相关的水槽尺度数学模型基础研究相对较少,未来关于植被影响下的泥沙输运方面的实验室尺度模型仍需进一步探究。
作者贡献声明
匡翠萍:论文撰写与修改。
丛 新:论文撰写与修改。
韩雪健:资料整理。
宫立新:资料整理。
刘会欣:资料整理。
朱 磊:资料整理。
参考文献
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation [J]. Nature Climate Change, 2013, 3(11): 961. [百度学术]
MORISON J R, O’BRIEN M P, JOHNSON J W, et al. The force exerted by surface waves on piles [J]. Journal of Petroleum Technology, 1950, 2(5): 149. [百度学术]
BEUDIN A, KALRA T S, GANJU N K, et al. Development of a coupled wave-flow-vegetation interaction model [J]. Computers and Geosciences, 2017, 100: 76. [百度学术]
MARJORIBANKS T I, PAUL M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation [J]. Journal of Hydraulic Research, 2022, 60(1): 46. [百度学术]
SUZUKI T, HU Z, KUMADA K, et al. Non-hydrostatic modeling of drag, inertia and porous effects in wave propagation over dense vegetation fields [J]. Coastal Engineering, 2019, 149: 49. [百度学术]
REN Jie, DONG Zengchuan, JIN Dawei, et al. Wave-attenuation characteristics of combined-vegetation wave break forests for big rivers with large flood water level changes [J]. Water Science and Technology, 2021, 83(4): 831. [百度学术]
ZHU Longhuan, ZOU Qingping. Three-layer analytical solution for wave attenuation by suspended and nonsuspended vegetation canopy [C]//Coastal Engineering Proceedings. Antalya:[s.n.], 2016: 1-8. [百度学术]
CHEN Haifei, LIU Xiaofeng, ZOU Qingping. Wave-driven flow induced by suspended and submerged canopies [J]. Advances in Water Resources, 2019, 123: 160. [百度学术]
WANG Weijie, HUAI Wenxin, LI Shuolin, et al. Analytical solutions of velocity profile in flow through submerged vegetation with variable frontal width [J]. Journal of Hydrology, 2019, 578: 124088. [百度学术]
ZHU Longhuan, ZOU Qingping, HUGUENARD K, et al. Mechanisms for the asymmetric motion of submerged aquatic vegetation in waves: a consistent-mass cable model [J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015517. [百度学术]
ZHU Ling, CHEN Qin. Numerical modeling of surface waves over submerged flexible vegetation [J]. Journal of Engineering Mechanics, 2015, 141(8): A4015001. [百度学术]
MAZA M, LARA J L, LOSADA I J. A coupled model of submerged vegetation under oscillatory flow using Navier-Stokes equations [J]. Coastal Engineering, 2013, 80: 16. [百度学术]
HU J, MEI C C, CHANG C W, et al. Effect of flexible coastal vegetation on waves in water of intermediate depth [J]. Coastal Engineering, 2021, 168: 103937. [百度学术]
MARJORIBANKS T I, HARDY R J, LANE S N, et al. High-resolution numerical modelling of flow-vegetation interactions [J]. Journal of Hydraulic Research, 2014, 52(6): 775. [百度学术]
FAMILKHALILI R, TAHVILDARI N. Computational modeling of coupled waves and vegetation stem dynamics in highly flexible submerged meadows [J]. Advances in Water Resources, 2022, 165: 104222. [百度学术]
丁雪, 吉庆丰, 朱宇泽. 含刚性沉水植物水槽二维流场的数值模拟研究[J]. 水利与建筑工程学报, 2018, 16(4): 215. [百度学术]
DING Xue, JI Qingfeng, ZHU Yuze. Numerical simulation of 2D flow with rigid submerged plants [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(4): 215. [百度学术]
刘达, 黄本胜, 邱静, 等. 海岸破碎带植物消浪数值模拟研究[J]. 海洋工程, 2016, 34(2): 16. [百度学术]
LIU Da, HUANG Bensheng, QIU Jing, et al. Numerical simulation of vegetation-induced wave dissipation in the surf zone [J]. The Ocean Engineering, 2016, 34(2): 16. [百度学术]
ORTON P M, TALKE S A, JAY D A, et al. Channel shallowing as mitigation of coastal flooding [J]. Journal of Marine Science and Engineering, 2015, 3(3): 654. [百度学术]
CHATELAIN M, PROUST S. Open-channel flows through emergent rigid vegetation effects of bed roughness and shallowness on the flow structure and surface waves [J]. Physics of Fluids, 2021, 33(10): 106602. [百度学术]
SGARABOTTO A, D’ALPAOS A, LANZONI S. Effects of vegetation sediment supply and sea level rise on the morphodynamic evolution of tidal channels [J]. Water Resources Research, 2021, 57(7): e2020WR028577. [百度学术]
CAPONI F, VETSCH D F, SIVIGLIA A. A model study of the combined effect of above and below ground plant traits on the ecomorphodynamics of gravel bars [J]. Scientific Reports, 2020, 10: 17062. [百度学术]
槐文信, 朱政涛, 杨中华, 等. 基于水动力的植被消长模型及河道植被演替模拟[J]. 人民长江, 2020, 51(1): 174. [百度学术]
HUAI Wenxin, ZHU Zhengtao, YANG Zhonghua, et al. Growth-decay model of vegetation based on hydrodynamics and simulation on vegetation succession in river [J]. Yangtze River, 2020, 51(1): 174. [百度学术]
DANG Xiaofeng, HUAI Wenxin, ZHU Zhengtao. Numerical simulation of vegetation evolution in compound channels [J]. Environmental Science and Pollution Research, 2023, 30(1):1595. [百度学术]
CARBONARI C, CALVANI G, SOLARI L. Explaining multiple patches of aquatic vegetation through linear stability analysis [J]. Environmental Fluid Mechanics, 2022, 22(2): 645. [百度学术]
KAKEH N, COCO G, MARANI M. On the morphodynamic stability of intertidal environments and the role of vegetation [J]. Advances in Water Resources, 2016, 93: 303. [百度学术]
DURáN O, MOORE L J. Vegetation controls on the maximum size of coastal dunes [J]. Proceedings of the National Academy of Sciences, 2013, 110(43): 17217. [百度学术]
XU Y, ESPOSITO C R, BURGOS M B, et al. Competing effects of vegetation density on sedimentation in deltaic marshes [J]. Nature Communications, 2022, 13: 4641. [百度学术]
KEIJSERS J G S, GROOT A V, RIKSEN M J P M. Modeling the biogeomorphic evolution of coastal dunes in response to climate change [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(6): 1161. [百度学术]
ZHU Q G, WIBERG P L, REIDENBACH M A. Quantifying seasonal seagrass effects on flow and sediment dynamics in a back‐barrier bay [J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016547. [百度学术]
NARDIN W, LERA S, NIENHUIS J. Effect of offshore waves and vegetation on the sediment budget in the Virginia coast reserve (VA) [J]. Earth Surface Processes and Landforms, 2020, 45(12): 3055. [百度学术]
DONATELLI C, KALRA T S, FAGHERAZZI S, et al. Dynamics of marsh-derived sediments in lagoon-type estuaries [J]. Journal of Geophysical Research: Earth Surface, 2020, 125(12): e2020JF005751. [百度学术]
GOURGUE O, BELZEN J, SCHWARZ C, et al. Biogeomorphic modeling to assess the resilience of tidal-marsh restoration to sea level rise and sediment supply [J]. Earth Surface Dynamics, 2022, 10(3): 531. [百度学术]
CAI Xun, QIN Qubin, SHEN Jian, et al. Bifurcate responses of tidal range to sea-level rise in estuaries with marsh evolution [J]. Limnology and Oceanography Letters, 2022, 7(3): 210. [百度学术]
XIE D H, SCHWARZ C, KLEINHANS M G, et al. Implications of coastal conditions and sea-level rise on mangrove vulnerability a bio-morphodynamic modeling study [J]. Journal of Geophysical Research: Earth Surface, 2022, 127(3): e2021JF006301. [百度学术]
王哲, 唐军. 近岸植被对台风浪传播影响的数值模拟分析[J]. 海洋环境科学, 2018, 37(5): 647. [百度学术]
WANG Zhe, TANG Jun. Numerical study for typhoon wave propagation in vegetation field [J]. Marine Environmental Science, 2018, 37(5): 647. [百度学术]
CHEN Zhipeng, LUO Feng, ZHOU Guanghuai, et al. Hydrodynamic modeling study of nature-based hybrid coastal defense strategy applied in salt marsh restoration[J]. Estuarine, Coastal and Shelf Science, 2024, 298: 108666. [百度学术]
YIN Kai, XU Sudong, HUANG Wenrui, et al. Modeling beach profile changes by typhoon impacts at Xiamen coast [J]. Natural Hazards, 2019, 95(3): 783. [百度学术]
FAIRCHILD T P, BENNETT W G, SMITH G, et al. Coastal wetlands mitigate storm flooding and associated costs in estuaries [J]. Environmental Research Letters, 2021, 16(7): 074034. [百度学术]
赵帅印,江洧,倪培桐. 芦苇类典型挺水植物对水流的影响模拟研究[J].广东水利电力职业技术学院学报,2017,15(1):5. [百度学术]
ZHAO Shuaiyin, JIANG Wei, NI Peitong. Simulation study on the effects of the typical emerged plant bulrush on hydrodynamic characteristics [J]. Journal of Guangdong Polytechnic of Water Resources and Electric Engineering, 2017, 15(1): 5. [百度学术]
KINGORA K, SADAT H. Flow and scalar transfer characteristics for a circular colony of vegetation [J]. Physics of Fluids, 2022, 34: 083606. [百度学术]
李绍武, 涂伟伟, 李明哲. 基于三维浅水方程的刚性植被水流特性研究[J]. 水道港口, 2022, 43(1): 8. [百度学术]
LI Shaowu, TU Weiwei, LI Mingzhe. Study on flow characteristics of rigid vegetation based on 3D shallow water equation [J]. Journal of Waterway and Harbor, 2022, 43(1): 8. [百度学术]
LIU Mengyang, HUAI Wenxin, JI Bin, et al. Numerical study on the drag characteristics of rigid submerged vegetation patches [J]. Physics of Fluids, 2021, 33(8): 085123. [百度学术]
LIU Mengyang, HUAI Wenxin, JI Bin. Characteristics of the flow structures through and around a submerged canopy patch [J]. Physics of Fluids, 2021, 33(3): 035144. [百度学术]
CHANG W Y, CONSTANTINESCU G, TSAI W F. Effect of array submergence on flow and coherent structures through and around a circular array of rigid vertical cylinders [J]. Physics of Fluids, 2020, 32(3): 035110. [百度学术]
才多, 诸裕良. 基于弱非线性RIDE模型的植物消浪数值模拟研究[J]. 海洋工程, 2014, 32(6): 41. [百度学术]
CAI Duo, ZHU Yuliang. Numerical study of vegetation-induced wave damping by weakly nonlinear RIDE model [J]. The Ocean Engineering, 2014, 32(6): 41. [百度学术]
王磊, 房克照, 尹晶, 等. 近岸波浪在刚性植被区域传播的数值模型[J]. 海洋工程, 2015, 33(6): 62. [百度学术]
WANG Lei, FANG Kezhao, YIN Jing, et al. A numerical model for coastal wave propagation in the rigid vegetation area [J]. The Ocean Engineering, 2015, 33(6): 62. [百度学术]
YIN Zegao, WANG Yanxu, YANG Xiaoyu. Regular wave run-up attenuation on a slope by emergent rigid vegetation [J]. Journal of Coastal Research, 2019, 35(3): 711. [百度学术]
ROOIJEN A, LOWE R, RIJNSDORP D P, et al. Wave-driven mean flow dynamics in submerged canopies [J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015935. [百度学术]
HEMAVATHI S, MANJULA R. Numerical modelling and laboratory observation for wave attenuation by coastal vegetation [J]. Indian Journal of Environmental Protection, 2020, 40(7): 735. [百度学术]
MAGDALENA I, ANDADARI G R, REEVE D E. An integrated study of wave attenuation by vegetation [J]. Wave Motion, 2022, 110: 102878. [百度学术]
VEELEN T J, KARUNARATHNA H, REEVE D E. Modelling wave attenuation by quasi-flexible coastal vegetation [J]. Coastal Engineering, 2021, 164: 103820. [百度学术]
CHEN Haifei, ZOU Qingping. Eulerian-Lagrangian flow-vegetation interaction model using immersed boundary method and OpenFOAM [J]. Advances in Water Resources, 2019, 126: 176. [百度学术]
YIN Kai, XU Sudong, HUANG Wenrui, et al. Numerical investigation of wave attenuation by coupled flexible vegetation dynamic model and xbeach wave model [J]. Ocean Engineering, 2021, 235: 109357. [百度学术]
YIN Kai, XU Sudong, GONG Shangpeng, et al. Effects of wave nonlinearity on submerged flexible vegetation dynamics and wave attenuation [J]. Ocean Engineering, 2021, 241: 110103. [百度学术]
YIN Kai, XU Sudong, GONG Shangpeng, et al. Modeling wave attenuation by submerged flexible vegetation with XBeach [J]. Ocean Engineering, 2022, 257: 111646. [百度学术]
蒋昌波, 徐进, 邓斌, 等. 基于非静压模型的非淹没刚性植物消波特性数值模拟研究[J]. 海洋通报, 2019, 38(5): 591. [百度学术]
JIANG Changbo, XU Jin, DENG Bin, et al. Numerical investigation of wave attenuation through non-submerged rigid vegetation by a non-hydrostatic model [J]. Marine Science Bulletin, 2019, 38(5): 591. [百度学术]
ZHU L, CHEN Q J, JAFARI N, et al. Modeling effects of vegetation on setup and runup of random waves [C]//Coastal Engineering Proceedings. Baltimore:[s.n.], 2018: 1-2. [百度学术]
才多, 徐凡. 基于改进的RIDE-VEG模型的随机波下植物消浪数值模拟研究[J]. 水道港口, 2016, 37(6): 584. [百度学术]
CAI Duo, XU Fan. Numerical study of vegetation-induced wave damping under random wave by improved RIDE-VEG model [J]. Journal of Waterway and Harbor, 2016, 37(6): 584. [百度学术]
张明亮, 赵楷宾, 孙圳, 等. 基于波能量平衡方程模拟波浪在柔性植物区的传播与变形[J]. 应用基础与工程科学学报, 2017, 25(3): 467. [百度学术]
ZHANG Mingliang, ZHAO Kaibin, SUN Zhen, et al. Wave propagation and transformation in flexible vegetated water based on the wave energy balance equation [J]. Journal of Basic Science and Engineering, 2017, 25(3): 467. [百度学术]
MATTIS S A, KEES C E, WEI M V, et al. Computational model for wave attenuation by flexible vegetation [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019, 145(1): 04018033. [百度学术]
崔坤明, 唐军, 杨志勇. 基于Boussinesq模型的刚性植被水域波浪传播特性数值分析[J]. 水运工程, 2017(1): 41. [百度学术]
CUI Kunming, TANG Jun, YANG Zhiyong. Numerical study for wave propagation in rigid vegetation based on Boussinesq equation [J]. Port and Waterway Engineering, 2017(1): 41. [百度学术]
WANG Yanxu, YIN Zegao, LIU Yong. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model [J]. Advances in Water Resources, 2020, 146: 103755. [百度学术]
WANG Yanxu, YIN Zegao, LIU Yong. Numerical study of solitary wave interaction with a vegetated platform [J]. Ocean Engineering, 2019, 192: 106561. [百度学术]
蒋昌波, 熊玉章, 屈科, 等. 非淹没刚性植物对海啸作用下海堤水动力特性影响数值模拟研究[J]. 海洋工程, 2021, 39(5): 1. [百度学术]
JIANG Changbo, XIONG Yuzhang, QU Ke, et al. Numerical investigation on effects of emergent rigid vegetation patch on hydrodynamic characteristics of seawall under tsunami wave [J]. The Ocean Engineering, 2021, 39(5): 1. [百度学术]
QU K, LAN G Y, KRAATZ S, et al. Numerical study on wave attenuation of tsunami-like wave by emergent rigid vegetation [J]. Journal of Earthquake and Tsunami, 2021, 15(6): 2150028. [百度学术]
QU K, LAN G Y, SUN W Y, et al. Numerical study on wave attenuation of extreme waves by emergent rigid vegetation patch [J]. Ocean Engineering, 2021, 239: 109865. [百度学术]
YIN Zegao, WANG Yanxu, LIU Yong, et al. Wave attenuation by rigid emergent vegetation under combined wave and current flows [J]. Ocean Engineering, 2020, 213: 107632. [百度学术]
ZHAO Chuyan, TANG Jun, SHEN Yongming, et al. Study on wave attenuation in following and opposing currents due to rigid vegetation [J]. Ocean Engineering, 2021, 236: 109574. [百度学术]
LOU Sha, CHEN Ming, MA Gangfeng, et al. Modelling of stem-scale turbulence and sediment suspension in vegetated flow [J]. Journal of Hydraulic Research, 2021, 59(3): 355. [百度学术]
陈明, 娄厦, 刘曙光, 等. 刚性沉水植物影响下波浪传播及泥沙悬浮数值模拟[J]. 同济大学学报(自然科学版), 2022, 50(6): 861. [百度学术]
CHEN Ming, LOU Sha, LIU Shuguang, et al. Numerical simulation of wave propagation and sediment suspension affected by submerged rigid vegetation [J]. Journal of Tongji University (Natural Science), 2022, 50(6): 861. [百度学术]
LU Yesheng, CHENG Niansheng, WEI Maoxing. Formulation of bed shear stress for computing bed-load transport rate in vegetated flows [J]. Physics of Fluids, 2021, 33(11): 115105. [百度学术]
许媛媛, 张明亮, 乔洋, 等. 考虑植被作用下的二维溃坝水沙耦合数学模型[J]. 水力发电学报, 2015, 34(12): 73. [百度学术]
XU Yuanyuan, ZHANG Mingliang, QIAO Yang, et al. Numerical simulation of dynamic interaction between flow and sediment for dam-break floods with vegetation effect [J]. Journal of Hydroelectric Engineering, 2015, 34(12): 73. [百度学术]